Mostrar el registro sencillo del ítem
dc.contributor.author | Hernandez-Rueda, J. | es_ES |
dc.contributor.author | Siegel, J. | es_ES |
dc.contributor.author | Puerto García, Daniel | es_ES |
dc.contributor.author | Galvan-Sosa, M. | es_ES |
dc.contributor.author | Gawelda, W. | es_ES |
dc.contributor.author | Solis, J. | es_ES |
dc.date.accessioned | 2020-04-06T08:56:53Z | |
dc.date.available | 2020-04-06T08:56:53Z | |
dc.date.issued | 2013 | es_ES |
dc.identifier.issn | 0947-8396 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/140225 | |
dc.description.abstract | [EN] We have analyzed the ablation depth yield of fused silica irradiated with shaped pulse trains with a separation of 500 fs and increasing or decreasing intensity envelopes. This temporal separation value is extracted from previous studies on ablation dynamics upon irradiation with transform-limited 100 fs laser pulses. The use of decreasing intensity pulse trains leads to a strong increase of the induced ablation depth when compared to the behavior, at the same pulse fluence, of intensity increasing pulse trains. In addition, we have studied the material response under stretched (500 fs, FWHM) and transform-limited (100 fs, FWHM) pulses, for which avalanche or multiphoton ionization respectively dominates the carrier generation process. The comparison of the corresponding evolution of the ablated depth vs. fluence suggests that the use of pulse trains with decreasing intensity at high fluences should lead to enhanced single exposure ablation depths, beyond the limits corresponding to MPI- or AI-alone dominated processes. | es_ES |
dc.description.sponsorship | This work has been partially supported by the Spanish TEC2008-01183 and TEC2011-22422 projects. J.H.-R. and D. P. acknowledges a grant of the Spanish Ministry of Science and Innovation. W. G. acknowledges the CSIC (I3P Program contracts co-funded by the European Social Fund). We are grateful to Professor S. Marcos from IO-CSIC for providing access to the optical interference microscope. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Applied Physics A | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Ablation dynamics | es_ES |
dc.subject | Carrier generation | es_ES |
dc.subject | Intensity pulse | es_ES |
dc.subject | Material response | es_ES |
dc.subject | Multiphoton ionization | es_ES |
dc.subject | Plasma dynamics | es_ES |
dc.subject | Single exposure | es_ES |
dc.subject | Temporal separation | es_ES |
dc.title | Ad-hoc design of temporally shaped fs laser pulses based on plasma dynamics for deep ablation in fused silica | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00339-012-7238-2 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2008-01183/ES/PRODUCCION DE ELEMENTOS FOTONICOS EN SUPERFICIE Y VOLUMEN MEDIANTE ESCRITURA DIRECTA CON FUENTES AVANZADAS DE PULSOS ULTRACORTOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2011-28664-C02-02/ES/APPLICATIONS OF METAMATERIALS IN THE OPTICAL RANGE/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica | es_ES |
dc.description.bibliographicCitation | Hernandez-Rueda, J.; Siegel, J.; Puerto García, D.; Galvan-Sosa, M.; Gawelda, W.; Solis, J. (2013). Ad-hoc design of temporally shaped fs laser pulses based on plasma dynamics for deep ablation in fused silica. Applied Physics A. 112(1):185-189. https://doi.org/10.1007/s00339-012-7238-2 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s00339-012-7238-2 | es_ES |
dc.description.upvformatpinicio | 185 | es_ES |
dc.description.upvformatpfin | 189 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 112 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\246636 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyerter-Vehn, S.I. Anisimov, Phys. Rev. Lett. 81, 224 (1998) | es_ES |
dc.description.references | Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, Proc. SPIE 3343, 46 (1998) | es_ES |
dc.description.references | D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, J. Solis, J. Opt. Soc. Am. B 27, 121986 (2010) | es_ES |
dc.description.references | J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, J. Bonse, Appl. Phys. Lett. 91, 082902 (2007) | es_ES |
dc.description.references | S. Guizard, N. Fedorov, A. Mouskeftaras, S. Klimentov, AIP Conf. Proc. 1278, 336 (2010) | es_ES |
dc.description.references | I.H. Chowdhury, A.Q. Wu, X. Xu, A.M. Weiner, Appl. Phys. A, Mater. Sci. Process. 81, 1627 (2005) | es_ES |
dc.description.references | B. Rethfeld, Phys. Rev. B 73, 035101 (2006) | es_ES |
dc.description.references | B.H. Christensen, P. Balling, Phys. Rev. B 79, 155424 (2009) | es_ES |
dc.description.references | A.M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000) | es_ES |
dc.description.references | A. Präkelt, M. Wollenhaupt, A. Assion, Ch. Horn, C. Sarpe-Tudoran, M. Winter, T. Baumert, Rev. Sci. Instrum. 74, 950 (2003) | es_ES |
dc.description.references | R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I.V. Hertel, Appl. Phys. A 77, 265 (2003) | es_ES |
dc.description.references | R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I.V. Hertel, Appl. Phys. Lett. 80, 353 (2002) | es_ES |
dc.description.references | R. Stoian, M. Wollenhaupt, T. Baumert, I.V. Hertel, in Laser Precision Microfabrication, ed. by K. Sugioka, M. Meunier, A. Piqué (Springer, Berlin, 2010). Chap. 5 | es_ES |
dc.description.references | L. Englert, M. Wollenhaupt, L. Haag, C. Sarpe-Tudoran, B. Rethfeld, T. Baumert, Appl. Phys. A 92 (2008) | es_ES |
dc.description.references | L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, T. Baumert, Opt. Express 15, 17855 (2007) | es_ES |
dc.description.references | R. Trebino, K.W. DeLong, D.N. Fittinghoff, J.N. Sweetser, M.A. Krumbügel, B.A. Richman, D.J. Kane, Rev. Sci. Instrum. 68, 3277 (1997) | es_ES |
dc.description.references | J.M. Liu, Opt. Lett. 7, 196 (1982) | es_ES |
dc.description.references | M. Hacker, G. Stobrawa, T. Feurer, Opt. Express 9, 191 (2001) | es_ES |
dc.description.references | A. Rundquist, A. Efimov, D.H. Reitze, J. Opt. Soc. Am. B 19, 2468 (2002) | es_ES |
dc.description.references | B. Rethfeld, O. Brenk, N. Medvedev, H. Krutsch, D.H.H. Hoffmann, Appl. Phys. A 101, 19 (2010) | es_ES |
dc.description.references | J. Hernandez-Rueda, D. Puerto, J. Siegel, M. Galvan-Sosa, J. Solis, Appl. Surf. Sci. doi: 10.1016/j.apsusc.2011.12.020 | es_ES |
dc.description.references | B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, Phys. Rev. B 53, 1749 (1996) | es_ES |
dc.description.references | L. Jiao, Y. Jin, Y. Ji, Y. Tong, F. Wang, T. Liu, L. Wang, Proc. SPIE 7655, 76552J (2010) | es_ES |