Mostrar el registro sencillo del ítem
dc.contributor.author | Martinez-Martin, Ester | es_ES |
dc.contributor.author | Araujo, Angelo | es_ES |
dc.contributor.author | Cazorla, Miguel | es_ES |
dc.date.accessioned | 2020-04-06T08:56:57Z | |
dc.date.available | 2020-04-06T08:56:57Z | |
dc.date.issued | 2019-10-02 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/140228 | |
dc.description.abstract | [EN] There are great physical and cognitive benefits for older adults who are engaged in active aging, a process that should involve daily exercise. In our previous work on the PHysical Assistant RObot System (PHAROS), we developed a system that proposed and monitored physical activities. The system used a social robot to analyse, by means of computer vision, the exercise a person was doing. Then, a recommender system analysed the exercise performed and indicated what exercise to perform next. However, the system needed certain improvements. On the one hand, the vision system captured the movement of the person and indicated whether the exercise had been done correctly or not. On the other hand, the recommender system was based purely on a ranking system that did not take into account temporal evolution and preferences. In this work, we propose an evolution of PHAROS, PHAROS 2.0, incorporating improvements in both of the previously mentioned aspects. In the motion capture aspect, we are now able to indicate the degree of completeness of each exercise, identifying the part that has not been done correctly, and a real-time performance correction. In this way, the recommender system receives a greater amount of information and so can more accurately indicate the exercise to be performed. In terms of the recommender system, an algorithm was developed to weigh the performance, temporal evolution and preferences, providing a more accurate recommendation, as well as expanding the recommendation to a batch of exercises, instead of just one. | es_ES |
dc.description.sponsorship | This work was partly supported by the FCT-Fundacao para a Ciencia e Tecnologia through the Post-Doc scholarship SFRH/BPD/102696/2014 and by the Spanish Government TIN2016-76515-R Grant supported with Feder funds. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Assistive robotics | es_ES |
dc.subject | Active ageing | es_ES |
dc.subject | Decision support system | es_ES |
dc.subject | Cognitive assistant | es_ES |
dc.subject | Deep learning | es_ES |
dc.title | PHAROS 2.0-A PHysical Assistant RObot System Improved | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s19204531 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F102696%2F2014/PT/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2016-76515-R/ES/RETORNO AL HOGAR: SISTEMA DE MEJORA DE LA AUTONOMIA DE PERSONAS CON DAÑO CEREBRAL ADQUIRIDO Y DEPENDIENTES EN SU INTEGRACION EN LA SOCIEDAD/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Martinez-Martin, E.; Araujo, A.; Cazorla, M. (2019). PHAROS 2.0-A PHysical Assistant RObot System Improved. Sensors. 19(20):1-18. https://doi.org/10.3390/s19204531 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/s19204531 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 18 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | es_ES |
dc.description.issue | 20 | es_ES |
dc.identifier.eissn | 1424-8220 | es_ES |
dc.relation.pasarela | S\402987 | es_ES |
dc.contributor.funder | Fundação para a Ciência e a Tecnologia, Portugal | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | World Alzheimer Report 2018—The State of the Art of Dementia Research: New Frontiershttps://www.alz.co.uk/research/WorldAlzheimerReport2018.pdf | es_ES |
dc.description.references | World Report on Disabilityhttps://www.who.int/disabilities/world_report/2011/report.pdf | es_ES |
dc.description.references | Global Action Plan for the Prevention and Control of NCDs 2013–2020https://apps.who.int/iris/bitstream/handle/10665/94384/9789241506236_eng.pdf | es_ES |
dc.description.references | Management of Physical Health Conditions in Adults with Severe Mental Disorders: WHO Guidelineshttp://apps.who.int/iris/bitstream/handle/10665/275718/9789241550383-eng.pdf | es_ES |
dc.description.references | Paúl, C., Teixeira, L., & Ribeiro, O. (2017). Active Aging in Very Old Age and the Relevance of Psychological Aspects. Frontiers in Medicine, 4. doi:10.3389/fmed.2017.00181 | es_ES |
dc.description.references | Caprara, M., Molina, M. Á., Schettini, R., Santacreu, M., Orosa, T., Mendoza-Núñez, V. M., … Fernández-Ballesteros, R. (2013). Active Aging Promotion: Results from theVital AgingProgram. Current Gerontology and Geriatrics Research, 2013, 1-14. doi:10.1155/2013/817813 | es_ES |
dc.description.references | Exercises for Older Peoplehttps://www.nhs.uk/Tools/Documents/NHS_ExercisesForOlderPeople.pdf | es_ES |
dc.description.references | Mura, G., & Carta, M. G. (2013). Physical Activity in Depressed Elderly. A Systematic Review. Clinical Practice & Epidemiology in Mental Health, 9(1), 125-135. doi:10.2174/1745017901309010125 | es_ES |
dc.description.references | Unmet Needs: Improper Social Care Assessments for Older People in Englandhttps://www.hrw.org/sites/default/files/report_pdf/uk0119_web3.pdf | es_ES |
dc.description.references | Stefano, M., Patrizia, P., Mario, A., Ferlini, G., Rizzello, R., & Rosati, G. (2014). Robotic Upper Limb Rehabilitation after Acute Stroke by NeReBot: Evaluation of Treatment Costs. BioMed Research International, 2014, 1-5. doi:10.1155/2014/265634 | es_ES |
dc.description.references | Amadeohttps://tyromotion.com/en/produkte/amadeo/ | es_ES |
dc.description.references | Lokomathttps://www.hocoma.com/solutions/lokomat/ | es_ES |
dc.description.references | Riablohttp://www.syncrospain.com/rehabilitacion/ | es_ES |
dc.description.references | G-EO SYSTEM—An Advanced Robotic Gait Trainerhttps://www.rehatechnology.com/en/products/g-eo-system | es_ES |
dc.description.references | IREX—Immersive Rehabilitation EXercisehttp://www.gesturetekhealth.com/products/irex | es_ES |
dc.description.references | Fitbithttps://www.fitbit.com/es/home | es_ES |
dc.description.references | Sergueeva, K., & Shaw, N. (2016). Wearable Technology in Hospitals: Overcoming Patient Concerns About Privacy. Lecture Notes in Computer Science, 446-456. doi:10.1007/978-3-319-39399-5_42 | es_ES |
dc.description.references | Martinez-Martin, E., & Cazorla, M. (2019). Rehabilitation Technology: Assistance from Hospital to Home. Computational Intelligence and Neuroscience, 2019, 1-8. doi:10.1155/2019/1431509 | es_ES |
dc.description.references | Toyrahttp://www.toyra.org/en/ | es_ES |
dc.description.references | Jintronix Rehabilitation System (JRS)http://www.jintronix.com/ | es_ES |
dc.description.references | Gadde, P., Kharrazi, H., Patel, H., & MacDorman, K. F. (2011). Toward Monitoring and Increasing Exercise Adherence in Older Adults by Robotic Intervention: A Proof of Concept Study. Journal of Robotics, 2011, 1-11. doi:10.1155/2011/438514 | es_ES |
dc.description.references | Görer, B., Salah, A. A., & Akın, H. L. (2016). An autonomous robotic exercise tutor for elderly people. Autonomous Robots, 41(3), 657-678. doi:10.1007/s10514-016-9598-5 | es_ES |
dc.description.references | ENRICHMEhttp://www.enrichme.eu/ | es_ES |
dc.description.references | Baillie, L., Breazeal, C., Denman, P., Foster, M. E., Fischer, K., & Cauchard, J. R. (2019). The Challenges of Working on Social Robots that Collaborate with People. Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems. doi:10.1145/3290607.3299022 | es_ES |
dc.description.references | Canal, G., Escalera, S., & Angulo, C. (2016). A real-time Human-Robot Interaction system based on gestures for assistive scenarios. Computer Vision and Image Understanding, 149, 65-77. doi:10.1016/j.cviu.2016.03.004 | es_ES |
dc.description.references | Makris, S., Karagiannis, P., Koukas, S., & Matthaiakis, A.-S. (2016). Augmented reality system for operator support in human–robot collaborative assembly. CIRP Annals, 65(1), 61-64. doi:10.1016/j.cirp.2016.04.038 | es_ES |
dc.description.references | Tsarouchi, P., Makris, S., & Chryssolouris, G. (2016). Human–robot interaction review and challenges on task planning and programming. International Journal of Computer Integrated Manufacturing, 29(8), 916-931. doi:10.1080/0951192x.2015.1130251 | es_ES |
dc.description.references | Tsarouchi, P., Athanasatos, A., Makris, S., Chatzigeorgiou, X., & Chryssolouris, G. (2016). High Level Robot Programming Using Body and Hand Gestures. Procedia CIRP, 55, 1-5. doi:10.1016/j.procir.2016.09.020 | es_ES |
dc.description.references | Poppe, R. (2010). A survey on vision-based human action recognition. Image and Vision Computing, 28(6), 976-990. doi:10.1016/j.imavis.2009.11.014 | es_ES |
dc.description.references | Pishchulin, L., Insafutdinov, E., Tang, S., Andres, B., Andriluka, M., Gehler, P., & Schiele, B. (2016). DeepCut: Joint Subset Partition and Labeling for Multi Person Pose Estimation. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2016.533 | es_ES |
dc.description.references | Guo, F., He, Y., & Guan, L. (2017). RGB-D camera pose estimation using deep neural network. 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP). doi:10.1109/globalsip.2017.8308674 | es_ES |
dc.description.references | Schwarcz, S., & Pollard, T. (2018). 3D Human Pose Estimation from Deep Multi-View 2D Pose. 2018 24th International Conference on Pattern Recognition (ICPR). doi:10.1109/icpr.2018.8545631 | es_ES |
dc.description.references | Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S.-E., & Sheikh, Y. A. (2019). OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1-1. doi:10.1109/tpami.2019.2929257 | es_ES |
dc.description.references | Cao, Z., Simon, T., Wei, S.-E., & Sheikh, Y. (2017). Realtime Multi-person 2D Pose Estimation Using Part Affinity Fields. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2017.143 | es_ES |
dc.description.references | Martinez-Martin, E., & Cazorla, M. (2019). A Socially Assistive Robot for Elderly Exercise Promotion. IEEE Access, 7, 75515-75529. doi:10.1109/access.2019.2921257 | es_ES |
dc.description.references | He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2016.90 | es_ES |
dc.description.references | Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780. doi:10.1162/neco.1997.9.8.1735 | es_ES |
dc.description.references | Example of the Glicko-2 Systemhttp://www.glicko.net/glicko/glicko2.pdf | es_ES |
dc.description.references | Bethancourt, H. J., Rosenberg, D. E., Beatty, T., & Arterburn, D. E. (2014). Barriers to and Facilitators of Physical Activity Program Use Among Older Adults. Clinical Medicine & Research, 12(1-2), 10-20. doi:10.3121/cmr.2013.1171 | es_ES |