- -

Graphene from Alginate Pyrolysis as a Metal-Free Catalyst for Hydrogenation of Nitro Compounds

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Graphene from Alginate Pyrolysis as a Metal-Free Catalyst for Hydrogenation of Nitro Compounds

Show full item record

Trandafir, M.; Florea, M.; Neatu, F.; Primo Arnau, AM.; García Gómez, H.; Parvulescu, VI. (2016). Graphene from Alginate Pyrolysis as a Metal-Free Catalyst for Hydrogenation of Nitro Compounds. ChemSusChem. 9(13):1565-1569. https://doi.org/10.1002/cssc.201600197

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140245

Files in this item

Item Metadata

Title: Graphene from Alginate Pyrolysis as a Metal-Free Catalyst for Hydrogenation of Nitro Compounds
Author: Trandafir, Mihaela-Mirela Florea, Mihaela Neatu, Florentina Primo Arnau, Ana Maria García Gómez, Hermenegildo Parvulescu, Vasile I.
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
[EN] Graphene obtained by pyrolysis of alginate at 900 degrees C under inert atmosphere and exfoliation is used as a metal-free catalyst for reduction of nitro to amino groups with hydrogen as a reagent. The process is ...[+]
Subjects: Alginate , Carbocatalysis , Graphene , Hydrogenation , Metal-free catalyst
Copyrigths: Cerrado
Source:
ChemSusChem. (issn: 1864-5631 )
DOI: 10.1002/cssc.201600197
Publisher:
John Wiley & Sons
Publisher version: https://doi.org/10.1002/cssc.201600197
Project ID:
MINISTERIO DE ECONOMIA Y COMPETITIVIDAD/SEV-2012-0267
GV/Prometeo 2013-014
UEFISCDI/275/05/10/2011
MINISTERIO DE ECONOMIA INDUSTRIA Y COMPETITIVIDAD /CTQ2015-69153-C2-1-R
Thanks:
Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2015-69153) and Generalidad Valenciana (Prometeo 2013-14) is gratefully acknowledged. V.I.P. is grateful to UEFISCDI for financial ...[+]
Type: Artículo

References

Zhang, N., Yang, M.-Q., Liu, S., Sun, Y., & Xu, Y.-J. (2015). Waltzing with the Versatile Platform of Graphene to Synthesize Composite Photocatalysts. Chemical Reviews, 115(18), 10307-10377. doi:10.1021/acs.chemrev.5b00267

Zhang, N., Zhang, Y., & Xu, Y.-J. (2012). Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale, 4(19), 5792. doi:10.1039/c2nr31480k

Navalon, S., Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2016). Metal nanoparticles supported on two-dimensional graphenes as heterogeneous catalysts. Coordination Chemistry Reviews, 312, 99-148. doi:10.1016/j.ccr.2015.12.005 [+]
Zhang, N., Yang, M.-Q., Liu, S., Sun, Y., & Xu, Y.-J. (2015). Waltzing with the Versatile Platform of Graphene to Synthesize Composite Photocatalysts. Chemical Reviews, 115(18), 10307-10377. doi:10.1021/acs.chemrev.5b00267

Zhang, N., Zhang, Y., & Xu, Y.-J. (2012). Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale, 4(19), 5792. doi:10.1039/c2nr31480k

Navalon, S., Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2016). Metal nanoparticles supported on two-dimensional graphenes as heterogeneous catalysts. Coordination Chemistry Reviews, 312, 99-148. doi:10.1016/j.ccr.2015.12.005

Dreyer, D. R., & Bielawski, C. W. (2011). Carbocatalysis: Heterogeneous carbons finding utility in synthetic chemistry. Chemical Science, 2(7), 1233. doi:10.1039/c1sc00035g

Mousseau, J. J., & Charette, A. B. (2012). Direct Functionalization Processes: A Journey from Palladium to Copper to Iron to Nickel to Metal-Free Coupling Reactions. Accounts of Chemical Research, 46(2), 412-424. doi:10.1021/ar300185z

Navalon, S., Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2014). Carbocatalysis by Graphene-Based Materials. Chemical Reviews, 114(12), 6179-6212. doi:10.1021/cr4007347

Su, D. S., Perathoner, S., & Centi, G. (2013). Nanocarbons for the Development of Advanced Catalysts. Chemical Reviews, 113(8), 5782-5816. doi:10.1021/cr300367d

Su, D. S., Zhang, J., Frank, B., Thomas, A., Wang, X., Paraknowitsch, J., & Schlögl, R. (2010). Metal-Free Heterogeneous Catalysis for Sustainable Chemistry. ChemSusChem, 3(2), 169-180. doi:10.1002/cssc.200900180

Fujita, S., Watanabe, H., Katagiri, A., Yoshida, H., & Arai, M. (2014). Nitrogen and oxygen-doped metal-free carbon catalysts for chemoselective transfer hydrogenation of nitrobenzene, styrene, and 3-nitrostyrene with hydrazine. Journal of Molecular Catalysis A: Chemical, 393, 257-262. doi:10.1016/j.molcata.2014.06.021

Primo, A., Neatu, F., Florea, M., Parvulescu, V., & Garcia, H. (2014). Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation. Nature Communications, 5(1). doi:10.1038/ncomms6291

Boronat, M., Concepción, P., Corma, A., González, S., Illas, F., & Serna, P. (2007). A Molecular Mechanism for the Chemoselective Hydrogenation of Substituted Nitroaromatics with Nanoparticles of Gold on TiO2Catalysts:  A Cooperative Effect between Gold and the Support. Journal of the American Chemical Society, 129(51), 16230-16237. doi:10.1021/ja076721g

Corma, A. (2006). Chemoselective Hydrogenation of Nitro Compounds with Supported Gold Catalysts. Science, 313(5785), 332-334. doi:10.1126/science.1128383

Corma, A., Serna, P., Concepción, P., & Calvino, J. J. (2008). Transforming Nonselective into Chemoselective Metal Catalysts for the Hydrogenation of Substituted Nitroaromatics. Journal of the American Chemical Society, 130(27), 8748-8753. doi:10.1021/ja800959g

Lin, Y., Wu, S., Shi, W., Zhang, B., Wang, J., Kim, Y. A., … Su, D. S. (2015). Efficient and highly selective boron-doped carbon materials-catalyzed reduction of nitroarenes. Chemical Communications, 51(66), 13086-13089. doi:10.1039/c5cc01963j

Wang, H.-C., Li, B.-L., Zheng, Y.-J., & Wang, W.-Y. (2012). Mesoporous Carbon as a Metal-Free Catalyst for the Reduction of Nitroaromatics with Hydrazine Hydrate. Bulletin of the Korean Chemical Society, 33(9), 2961-2965. doi:10.5012/bkcs.2012.33.9.2961

Wu, S., Wen, G., Wang, J., Rong, J., Zong, B., Schlögl, R., & Su, D. S. (2014). Nitrobenzene reduction catalyzed by carbon: does the reaction really belong to carbocatalysis? Catal. Sci. Technol., 4(12), 4183-4187. doi:10.1039/c4cy00811a

Gao, Y., Ma, D., Wang, C., Guan, J., & Bao, X. (2011). Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature. Chem. Commun., 47(8), 2432-2434. doi:10.1039/c0cc04420b

Hu, H., Xin, J. H., Hu, H., & Wang, X. (2015). Structural and mechanistic understanding of an active and durable graphene carbocatalyst for reduction of 4-nitrophenol at room temperature. Nano Research, 8(12), 3992-4006. doi:10.1007/s12274-015-0902-z

Feng, C., Zhang, H.-Y., Shang, N.-Z., Gao, S.-T., & Wang, C. (2013). Magnetic graphene nanocomposite as an efficient catalyst for hydrogenation of nitroarenes. Chinese Chemical Letters, 24(6), 539-541. doi:10.1016/j.cclet.2013.03.036

Kumbhar, P. S., Sanchez-Valente, J., Millet, J. M. M., & Figueras, F. (2000). Mg–Fe Hydrotalcite as a Catalyst for the Reduction of Aromatic Nitro Compounds with Hydrazine Hydrate. Journal of Catalysis, 191(2), 467-473. doi:10.1006/jcat.2000.2827

Dhakshinamoorthy, A., Navalon, S., Sempere, D., Alvaro, M., & Garcia, H. (2013). Reduction of alkenes catalyzed by copper nanoparticles supported on diamond nanoparticles. Chemical Communications, 49(23), 2359. doi:10.1039/c3cc39011j

Dhakshinamoorthy, A., & Pitchumani, K. (2008). Clay entrapped nickel nanoparticles as efficient and recyclable catalysts for hydrogenation of olefins. Tetrahedron Letters, 49(11), 1818-1823. doi:10.1016/j.tetlet.2008.01.061

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2009). Metal-Organic Frameworks (MOFs) as Heterogeneous Catalysts for the Chemoselective Reduction of Carbon-Carbon Multiple Bonds with Hydrazine. Advanced Synthesis & Catalysis, 351(14-15), 2271-2276. doi:10.1002/adsc.200900362

Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978g

Geier, S. J., & Stephan, D. W. (2009). Lutidine/B(C6F5)3: At the Boundary of Classical and Frustrated Lewis Pair Reactivity. Journal of the American Chemical Society, 131(10), 3476-3477. doi:10.1021/ja900572x

Rokob, T. A., Hamza, A., & Pápai, I. (2009). Rationalizing the Reactivity of Frustrated Lewis Pairs: Thermodynamics of H2Activation and the Role of Acid−Base Properties. Journal of the American Chemical Society, 131(30), 10701-10710. doi:10.1021/ja903878z

Stephan, D. W. (2009). Frustrated Lewis pairs: a new strategy to small molecule activation and hydrogenation catalysis. Dalton Transactions, (17), 3129. doi:10.1039/b819621d

Stirling, A., Hamza, A., Rokob, T. A., & Pápai, I. (2008). Concerted attack of frustrated Lewis acid–base pairs on olefinic double bonds: a theoretical study. Chemical Communications, (27), 3148. doi:10.1039/b804662j

Primo, A., Sánchez, E., Delgado, J. M., & García, H. (2014). High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon, 68, 777-783. doi:10.1016/j.carbon.2013.11.068

Hummers, W. S., & Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339-1339. doi:10.1021/ja01539a017

Latorre-Sánchez, M., Lavorato, C., Puche, M., Fornés, V., Molinari, R., & Garcia, H. (2012). Visible-Light Photocatalytic Hydrogen Generation by Using Dye-Sensitized Graphene Oxide as a Photocatalyst. Chemistry - A European Journal, 18(52), 16774-16783. doi:10.1002/chem.201202372

[-]

This item appears in the following Collection(s)

Show full item record