- -

Holograms to Focus Arbitrary Ultrasonic Fields through the Skull

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Holograms to Focus Arbitrary Ultrasonic Fields through the Skull

Mostrar el registro completo del ítem

Jiménez-Gambín, S.; Jimenez, N.; Benlloch Baviera, JM.; Camarena Femenia, F. (2019). Holograms to Focus Arbitrary Ultrasonic Fields through the Skull. Physical Review Applied. 12(1):014016-1-014016-14. https://doi.org/10.1103/PhysRevApplied.12.014016

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140250

Ficheros en el ítem

Metadatos del ítem

Título: Holograms to Focus Arbitrary Ultrasonic Fields through the Skull
Autor: Jiménez-Gambín, Sergio Jimenez, Noe Benlloch Baviera, Jose María Camarena Femenia, Francisco
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] We report 3D-printed acoustic holographic lenses for the formation of ultrasonic fields of complex spatial distribution inside the skull. Using holographic lenses, we experimentally, numerically and theoretically ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Physical Review Applied. (eissn: 2331-7019 )
DOI: 10.1103/PhysRevApplied.12.014016
Editorial:
American Physical Society
Versión del editor: https://doi.org/10.1103/PhysRevApplied.12.014016
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TEC2016-80976-R/ES/CONTROL DE NANOPARTICULAS MAGNETICAS PARA TERAPIA GUIADA POR IMAGEN/
...[+]
info:eu-repo/grantAgreement/MINECO//TEC2016-80976-R/ES/CONTROL DE NANOPARTICULAS MAGNETICAS PARA TERAPIA GUIADA POR IMAGEN/
info:eu-repo/grantAgreement/GVA//GV%2F2018%2F011/
info:eu-repo/grantAgreement/GVA//APOSTD%2F2017%2F042/
info:eu-repo/grantAgreement/GVA//ACIF%2F2017%2F045/
info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2FA%2F022/ES/EQUIPOS PARA TECNICAS MIXTAS ELECTROMAGNETICAS-ULTRASONICAS PARA IMAGEN MEDICA/
info:eu-repo/grantAgreement/AVI//INNCON00%2F18%2F9/
[-]
Agradecimientos:
This work is supported by the Spanish Ministry of Economy and Innovation (MINECO) through Project No. TEC2016-80976-R. N.J. and S.J. acknowledge financial support from Generalitat Valenciana through Grants No. APOSTD/2017/042, ...[+]
Tipo: Artículo

References

GABOR, D. (1948). A New Microscopic Principle. Nature, 161(4098), 777-778. doi:10.1038/161777a0

Microscopy by reconstructed wave-fronts. (1949). Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 197(1051), 454-487. doi:10.1098/rspa.1949.0075

Leith, E. N., & Upatnieks, J. (1962). Reconstructed Wavefronts and Communication Theory*. Journal of the Optical Society of America, 52(10), 1123. doi:10.1364/josa.52.001123 [+]
GABOR, D. (1948). A New Microscopic Principle. Nature, 161(4098), 777-778. doi:10.1038/161777a0

Microscopy by reconstructed wave-fronts. (1949). Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 197(1051), 454-487. doi:10.1098/rspa.1949.0075

Leith, E. N., & Upatnieks, J. (1962). Reconstructed Wavefronts and Communication Theory*. Journal of the Optical Society of America, 52(10), 1123. doi:10.1364/josa.52.001123

Ni, X., Kildishev, A. V., & Shalaev, V. M. (2013). Metasurface holograms for visible light. Nature Communications, 4(1). doi:10.1038/ncomms3807

Huang, L., Chen, X., Mühlenbernd, H., Zhang, H., Chen, S., Bai, B., … Zhang, S. (2013). Three-dimensional optical holography using a plasmonic metasurface. Nature Communications, 4(1). doi:10.1038/ncomms3808

Ma, G., & Sheng, P. (2016). Acoustic metamaterials: From local resonances to broad horizons. Science Advances, 2(2), e1501595. doi:10.1126/sciadv.1501595

Cummer, S. A., Christensen, J., & Alù, A. (2016). Controlling sound with acoustic metamaterials. Nature Reviews Materials, 1(3). doi:10.1038/natrevmats.2016.1

Liu, Z. (2000). Locally Resonant Sonic Materials. Science, 289(5485), 1734-1736. doi:10.1126/science.289.5485.1734

Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., & Zhang, X. (2006). Ultrasonic metamaterials with negative modulus. Nature Materials, 5(6), 452-456. doi:10.1038/nmat1644

Yang, M., Ma, G., Yang, Z., & Sheng, P. (2013). Coupled Membranes with Doubly Negative Mass Density and Bulk Modulus. Physical Review Letters, 110(13). doi:10.1103/physrevlett.110.134301

Li, Y., Liang, B., Gu, Z., Zou, X., & Cheng, J. (2013). Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces. Scientific Reports, 3(1). doi:10.1038/srep02546

Xie, Y., Wang, W., Chen, H., Konneker, A., Popa, B.-I., & Cummer, S. A. (2014). Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nature Communications, 5(1). doi:10.1038/ncomms6553

Jiménez, N., Cox, T. J., Romero-García, V., & Groby, J.-P. (2017). Metadiffusers: Deep-subwavelength sound diffusers. Scientific Reports, 7(1). doi:10.1038/s41598-017-05710-5

Jiménez, N., Romero-García, V., Pagneux, V., & Groby, J.-P. (2017). Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems. Scientific Reports, 7(1). doi:10.1038/s41598-017-13706-4

Qi, S., Li, Y., & Assouar, B. (2017). Acoustic Focusing and Energy Confinement Based on Multilateral Metasurfaces. Physical Review Applied, 7(5). doi:10.1103/physrevapplied.7.054006

Bok, E., Park, J. J., Choi, H., Han, C. K., Wright, O. B., & Lee, S. H. (2018). Metasurface for Water-to-Air Sound Transmission. Physical Review Letters, 120(4). doi:10.1103/physrevlett.120.044302

Li, Y., Jiang, X., Liang, B., Cheng, J., & Zhang, L. (2015). Metascreen-Based Acoustic Passive Phased Array. Physical Review Applied, 4(2). doi:10.1103/physrevapplied.4.024003

Li, Y., & Assouar, M. B. (2015). Three-dimensional collimated self-accelerating beam through acoustic metascreen. Scientific Reports, 5(1). doi:10.1038/srep17612

Kaina, N., Lemoult, F., Fink, M., & Lerosey, G. (2015). Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials. Nature, 525(7567), 77-81. doi:10.1038/nature14678

Li, J., Fok, L., Yin, X., Bartal, G., & Zhang, X. (2009). Experimental demonstration of an acoustic magnifying hyperlens. Nature Materials, 8(12), 931-934. doi:10.1038/nmat2561

Melde, K., Mark, A. G., Qiu, T., & Fischer, P. (2016). Holograms for acoustics. Nature, 537(7621), 518-522. doi:10.1038/nature19755

Xie, Y., Shen, C., Wang, W., Li, J., Suo, D., Popa, B.-I., … Cummer, S. A. (2016). Acoustic Holographic Rendering with Two-dimensional Metamaterial-based Passive Phased Array. Scientific Reports, 6(1). doi:10.1038/srep35437

Zhu, Y., Hu, J., Fan, X., Yang, J., Liang, B., Zhu, X., & Cheng, J. (2018). Fine manipulation of sound via lossy metamaterials with independent and arbitrary reflection amplitude and phase. Nature Communications, 9(1). doi:10.1038/s41467-018-04103-0

Memoli, G., Caleap, M., Asakawa, M., Sahoo, D. R., Drinkwater, B. W., & Subramanian, S. (2017). Metamaterial bricks and quantization of meta-surfaces. Nature Communications, 8(1). doi:10.1038/ncomms14608

Brown, M. D., Cox, B. T., & Treeby, B. E. (2017). Design of multi-frequency acoustic kinoforms. Applied Physics Letters, 111(24), 244101. doi:10.1063/1.5004040

Hertzberg, Y., & Navon, G. (2011). Bypassing absorbing objects in focused ultrasound using computer generated holographic technique. Medical Physics, 38(12), 6407-6415. doi:10.1118/1.3651464

Zhang, P., Li, T., Zhu, J., Zhu, X., Yang, S., Wang, Y., … Zhang, X. (2014). Generation of acoustic self-bending and bottle beams by phase engineering. Nature Communications, 5(1). doi:10.1038/ncomms5316

Marzo, A., Seah, S. A., Drinkwater, B. W., Sahoo, D. R., Long, B., & Subramanian, S. (2015). Holographic acoustic elements for manipulation of levitated objects. Nature Communications, 6(1). doi:10.1038/ncomms9661

Ter Haar, >Gail, & Coussios, C. (2007). High intensity focused ultrasound: Physical principles and devices. International Journal of Hyperthermia, 23(2), 89-104. doi:10.1080/02656730601186138

Gélat, P., ter Haar, G., & Saffari, N. (2014). A comparison of methods for focusing the field of a HIFU array transducer through human ribs. Physics in Medicine and Biology, 59(12), 3139-3171. doi:10.1088/0031-9155/59/12/3139

Fry, F. J., & Barger, J. E. (1978). Acoustical properties of the human skull. The Journal of the Acoustical Society of America, 63(5), 1576-1590. doi:10.1121/1.381852

Thomas, J.-L., & Fink, M. A. (1996). Ultrasonic beam focusing through tissue inhomogeneities with a time reversal mirror: application to transskull therapy. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 43(6), 1122-1129. doi:10.1109/58.542055

Hynynen, K., & Jolesz, F. A. (1998). Demonstration of Potential Noninvasive Ultrasound Brain Therapy Through an Intact Skull. Ultrasound in Medicine & Biology, 24(2), 275-283. doi:10.1016/s0301-5629(97)00269-x

Sun, J., & Hynynen, K. (1998). Focusing of therapeutic ultrasound through a human skull: A numerical study. The Journal of the Acoustical Society of America, 104(3), 1705-1715. doi:10.1121/1.424383

Aubry, J.-F., Tanter, M., Pernot, M., Thomas, J.-L., & Fink, M. (2003). Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans. The Journal of the Acoustical Society of America, 113(1), 84-93. doi:10.1121/1.1529663

Tanter, M., Thomas, J.-L., & Fink, M. (1998). Focusing and steering through absorbing and aberrating layers: Application to ultrasonic propagation through the skull. The Journal of the Acoustical Society of America, 103(5), 2403-2410. doi:10.1121/1.422759

Hertzberg, Y., Volovick, A., Zur, Y., Medan, Y., Vitek, S., & Navon, G. (2010). Ultrasound focusing using magnetic resonance acoustic radiation force imaging: Application to ultrasound transcranial therapy. Medical Physics, 37(6Part1), 2934-2942. doi:10.1118/1.3395553

Jolesz, F. A. (Ed.). (2014). Intraoperative Imaging and Image-Guided Therapy. doi:10.1007/978-1-4614-7657-3

Shen, C., Xu, J., Fang, N. X., & Jing, Y. (2014). Anisotropic Complementary Acoustic Metamaterial for Canceling out Aberrating Layers. Physical Review X, 4(4). doi:10.1103/physrevx.4.041033

Maimbourg, G., Houdouin, A., Deffieux, T., Tanter, M., & Aubry, J.-F. (2018). 3D-printed adaptive acoustic lens as a disruptive technology for transcranial ultrasound therapy using single-element transducers. Physics in Medicine & Biology, 63(2), 025026. doi:10.1088/1361-6560/aaa037

Ferri, M., Bravo, J. M., Redondo, J., & Sánchez-Pérez, J. V. (2019). Enhanced Numerical Method for the Design of 3-D-Printed Holographic Acoustic Lenses for Aberration Correction of Single-Element Transcranial Focused Ultrasound. Ultrasound in Medicine & Biology, 45(3), 867-884. doi:10.1016/j.ultrasmedbio.2018.10.022

Hynynen, K., McDannold, N., Vykhodtseva, N., & Jolesz, F. A. (2001). Noninvasive MR Imaging–guided Focal Opening of the Blood-Brain Barrier in Rabbits. Radiology, 220(3), 640-646. doi:10.1148/radiol.2202001804

Tyler, W. J., Tufail, Y., Finsterwald, M., Tauchmann, M. L., Olson, E. J., & Majestic, C. (2008). Remote Excitation of Neuronal Circuits Using Low-Intensity, Low-Frequency Ultrasound. PLoS ONE, 3(10), e3511. doi:10.1371/journal.pone.0003511

Schneider, U., Pedroni, E., & Lomax, A. (1996). The calibration of CT Hounsfield units for radiotherapy treatment planning. Physics in Medicine and Biology, 41(1), 111-124. doi:10.1088/0031-9155/41/1/009

Mast, T. D. (2000). Empirical relationships between acoustic parameters in human soft tissues. Acoustics Research Letters Online, 1(2), 37-42. doi:10.1121/1.1336896

Mazziotta, J. C., Toga, A. W., Evans, A., Fox, P., & Lancaster, J. (1995). A Probabilistic Atlas of the Human Brain: Theory and Rationale for Its Development. NeuroImage, 2(2), 89-101. doi:10.1006/nimg.1995.1012

Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., & Gerig, G. (2006). User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. NeuroImage, 31(3), 1116-1128. doi:10.1016/j.neuroimage.2006.01.015

Treeby, B. E., & Cox, B. T. (2010). Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. The Journal of the Acoustical Society of America, 127(5), 2741-2748. doi:10.1121/1.3377056

Treeby, B. E., Jaros, J., Rendell, A. P., & Cox, B. T. (2012). Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method. The Journal of the Acoustical Society of America, 131(6), 4324-4336. doi:10.1121/1.4712021

Jiménez, N., Camarena, F., Redondo, J., Sánchez-Morcillo, V., Hou, Y., & Konofagou, E. E. (2016). Time-Domain Simulation of Ultrasound Propagation in a Tissue-Like Medium Based on the Resolution of the Nonlinear Acoustic Constitutive Relations. Acta Acustica united with Acustica, 102(5), 876-892. doi:10.3813/aaa.919002

Jiménez, N., Romero-García, V., Pagneux, V., & Groby, J.-P. (2017). Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound. Physical Review B, 95(1). doi:10.1103/physrevb.95.014205

Tsang, P. W. M., & Poon, T.-C. (2013). Novel method for converting digital Fresnel hologram to phase-only hologram based on bidirectional error diffusion. Optics Express, 21(20), 23680. doi:10.1364/oe.21.023680

Lirette, R., & Mobley, J. (2017). Focal zone characteristics of stepped Fresnel and axicon acoustic lenses. doi:10.1121/2.0000703

Gatto, M., Memoli, G., Shaw, A., Sadhoo, N., Gelat, P., & Harris, R. A. (2012). Three-Dimensional Printing (3DP) of neonatal head phantom for ultrasound: Thermocouple embedding and simulation of bone. Medical Engineering & Physics, 34(7), 929-937. doi:10.1016/j.medengphy.2011.10.012

Robertson, J., Martin, E., Cox, B., & Treeby, B. E. (2017). Sensitivity of simulated transcranial ultrasound fields to acoustic medium property maps. Physics in Medicine and Biology, 62(7), 2559-2580. doi:10.1088/1361-6560/aa5e98

Hill, C. R., Bamber, J. C., & ter Haar, G. R. (Eds.). (2004). Physical Principles of Medical Ultrasonics. doi:10.1002/0470093978

O’Neil, H. T. (1949). Theory of Focusing Radiators. The Journal of the Acoustical Society of America, 21(5), 516-526. doi:10.1121/1.1906542

Chen, D.-C., Zhu, X.-F., Wei, Q., Wu, D.-J., & Liu, X.-J. (2018). Broadband acoustic focusing by Airy-like beams based on acoustic metasurfaces. Journal of Applied Physics, 123(4), 044503. doi:10.1063/1.5010705

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem