- -

EP Elements in Rings with Involution

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

EP Elements in Rings with Involution

Mostrar el registro completo del ítem

Xu, S.; Chen, J.; Benítez López, J. (2019). EP Elements in Rings with Involution. Bulletin of the Malaysian Mathematical Sciences Society. 42(6):3409-3426. https://doi.org/10.1007/s40840-019-00731-x

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140253

Ficheros en el ítem

Metadatos del ítem

Título: EP Elements in Rings with Involution
Autor: Xu, Sanzhang Chen, Jianlong Benítez López, Julio
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] Let R be a unital ring with involution. We first show that the EP elements in R can be characterized by three equations. Namely, let a. R, then a is EP if and only if there exists x. R such that (xa)* = xa, xa(2) = a ...[+]
Palabras clave: Core inverse , EP , Bi-EP , N-EP
Derechos de uso: Reserva de todos los derechos
Fuente:
Bulletin of the Malaysian Mathematical Sciences Society. (issn: 0126-6705 )
DOI: 10.1007/s40840-019-00731-x
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s40840-019-00731-x
Código del Proyecto:
info:eu-repo/grantAgreement/NSFC//11771076/
Agradecimientos:
This research is supported by the National Natural Science Foundation of China (No. 11771076). The first author is grateful to China Scholarship Council for giving him a purse for his further study in Universitat Politecnica ...[+]
Tipo: Artículo

References

Baksalary, O.M., Trenkler, G.: Core inverse of matrices. Linear Multilinear Algebra 58(6), 681–697 (2010)

Benítez, J.: Moore–Penrose inverses and commuting elements of $C^{*}$-algebras. J. Math. Anal. Appl. 345(2), 766–770 (2008)

Bhaskara Rao, K.P.S.: The Theory of Generalized Inverses Over Commutative Rings. Taylor and Francis, London (2002) [+]
Baksalary, O.M., Trenkler, G.: Core inverse of matrices. Linear Multilinear Algebra 58(6), 681–697 (2010)

Benítez, J.: Moore–Penrose inverses and commuting elements of $C^{*}$-algebras. J. Math. Anal. Appl. 345(2), 766–770 (2008)

Bhaskara Rao, K.P.S.: The Theory of Generalized Inverses Over Commutative Rings. Taylor and Francis, London (2002)

Boasso, E.: On the Moore–Penrose inverse, EP Banach space operators, and EP Banach algebra elements. J. Math. Anal. Appl. 339(2), 1003–1014 (2008)

Chen, W.X.: On EP elements, normal elements and partial isometries in rings with involution. Electron. J. Linear Algebra 23, 553–561 (2012)

Drivaliaris, D., Karanasios, S., Pappas, D.: Factorizations of EP operators. Linear Algebra Appl. 429, 1555–1567 (2008)

Hartwig, R.E.: Block generalized inverses. Arch. Retion. Mech. Anal. 61(3), 197–251 (1976)

Hartwig, R.E., Spindelböck, K.: Matrices for which $A^*$ and $A^{\dagger }$ commute. Linear Multilinear Algebra 14(3), 241–256 (1983)

Koliha, J.J., Patrício, P.: Elements of rings with equal spectral idempotents. J. Aust. Math. Soc. 72(1), 137–152 (2002)

Mosić, D., Djordjević, D.S., Koliha, J.J.: EP elements in rings. Linear Algebra Appl. 431, 527–535 (2009)

Mosić, D., Djordjević, D.S.: New characterizations of EP, generalized normal and generalized Hermitian elements in rings. Appl. Math. Comput. 218, 6702–6710 (2012)

Patrício, P., Puystjens, R.: Drazin–Moore–Penrose invertiblity in rings. Linear Algebra Appl. 389, 159–173 (2004)

Rakić, D.S., Dinčić, Nebojša Č., Djordjević, D.S.: Group, Moore–Penrose, core and dual core inverse in rings with involution. Linear Algebra Appl. 463, 115–133 (2014)

von Neumann, J.: On regular rings. Proc. Natl. Acad. Sci. USA 22(12), 707–713 (1936)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem