Mostrar el registro sencillo del ítem
dc.contributor.author | Grirrane, Abdessamad | es_ES |
dc.contributor.author | Alvarez-González, Eleuterio | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.date.accessioned | 2020-04-06T08:57:45Z | |
dc.date.available | 2020-04-06T08:57:45Z | |
dc.date.issued | 2016 | es_ES |
dc.identifier.issn | 0947-6539 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/140256 | |
dc.description.abstract | [EN] Cationic and neutral silver(I)-L complexes (L = Buchwald-type biaryl phosphanes) with nitrogen co-ligands or organosulfonate counter ions have been synthesised and characterised through their structural and spectroscopic properties. At room temperature, both cationic and neutral silver(I)-L complexes are extremely active catalysts in the promotion of the single and double A(3) coupling of terminal (di)alkynes, pyrrolidine and formaldehyde. In addition, the aza-Diels-Alder two-and three-component coupling reactions of Danishefsky's diene with an imine or amine and aldehyde are efficiently catalysed by these cationic or neutral silver(I)-L complexes. The solvent influences the catalytic performance due to limited complex solubility or solvent decomposition and reactivity. The isolation of new silver(I)-L complexes with reagents as ligands lends support to mechanistic proposals for such catalytic processes. The activity, stability and metal-distal arene interaction of these silver(I)L catalysts have been compared with those of analogous cationic gold(I) and copper(I) complexes. | es_ES |
dc.description.sponsorship | Financial support by the Spanish ministry of Economy and Competitiveness (Severo Ochoa and CTQ2012-32315) and the Generalidad Valenciana (Prometeo 2012-014) is gratefully acknowledged. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Chemistry - A European Journal | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Cross-coupling | es_ES |
dc.subject | Homogeneous catalysis | es_ES |
dc.subject | P ligands | es_ES |
dc.subject | Reaction mechanisms | es_ES |
dc.subject | Silver | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Catalytic Activity of Cationic and Neutral Silver(I)-XPhos Complexes with Nitrogen Ligands or Tolylsulfonate for Mannich and Aza-Diels-Alder Coupling Reactions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/chem.201503386 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F014/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Grirrane, A.; Alvarez-González, E.; García Gómez, H.; Corma Canós, A. (2016). Catalytic Activity of Cationic and Neutral Silver(I)-XPhos Complexes with Nitrogen Ligands or Tolylsulfonate for Mannich and Aza-Diels-Alder Coupling Reactions. Chemistry - A European Journal. 22(1):340-354. https://doi.org/10.1002/chem.201503386 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/chem.201503386 | es_ES |
dc.description.upvformatpinicio | 340 | es_ES |
dc.description.upvformatpfin | 354 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 22 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\328551 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Silver in Organic Chemistry 2010 10.1002/9780470597521.ch12 | es_ES |
dc.description.references | Dias, H. V. R., Flores, J. A., Wu, J., & Kroll, P. (2009). Monomeric Copper(I), Silver(I), and Gold(I) Alkyne Complexes and the Coinage Metal Family Group Trends. Journal of the American Chemical Society, 131(31), 11249-11255. doi:10.1021/ja904232v | es_ES |
dc.description.references | Díez-González, S., & Nolan, S. P. (2008). Copper, Silver, and Gold Complexes in Hydrosilylation Reactions. Accounts of Chemical Research, 41(2), 349-358. doi:10.1021/ar7001655 | es_ES |
dc.description.references | Rudolph, M., & Hashmi, A. S. K. (2012). Gold catalysis in total synthesis—an update. Chem. Soc. Rev., 41(6), 2448-2462. doi:10.1039/c1cs15279c | es_ES |
dc.description.references | Abbiati, G., & Rossi, E. (2014). Silver and gold-catalyzed multicomponent reactions. Beilstein Journal of Organic Chemistry, 10, 481-513. doi:10.3762/bjoc.10.46 | es_ES |
dc.description.references | Prakash, O., Joshi, H., Kumar, U., Sharma, A. K., & Singh, A. K. (2015). Acridine based (S,N,S) pincer ligand: designing silver(i) complexes for the efficient activation of A3 (aldehyde, alkyne and amine) coupling. Dalton Transactions, 44(4), 1962-1968. doi:10.1039/c4dt02813a | es_ES |
dc.description.references | Trose, M., Dell’Acqua, M., Pedrazzini, T., Pirovano, V., Gallo, E., Rossi, E., … Abbiati, G. (2014). [Silver(I)(Pyridine-Containing Ligand)] Complexes As Unusual Catalysts for A3-Coupling Reactions. The Journal of Organic Chemistry, 79(16), 7311-7320. doi:10.1021/jo500981r | es_ES |
dc.description.references | Salam, N., Sinha, A., Roy, A. S., Mondal, P., Jana, N. R., & Islam, S. M. (2014). Synthesis of silver–graphene nanocomposite and its catalytic application for the one-pot three-component coupling reaction and one-pot synthesis of 1,4-disubstituted 1,2,3-triazoles in water. RSC Advances, 4(20), 10001. doi:10.1039/c3ra47466f | es_ES |
dc.description.references | Heterogeneous Catalysis. A Versatile Tool for the Synthesis of Bioactive Heterocycles 2015 10.1201/b17418-12 | es_ES |
dc.description.references | Mandai, H., Mandai, K., Snapper, M. L., & Hoveyda, A. H. (2008). Three-Component Ag-Catalyzed Enantioselective Vinylogous Mannich and Aza-Diels−Alder Reactions with Alkyl-Substituted Aldehydes. Journal of the American Chemical Society, 130(52), 17961-17969. doi:10.1021/ja807243t | es_ES |
dc.description.references | Kawasaki, M., & Yamamoto, H. (2006). Catalytic Enantioselective Hetero-Diels−Alder Reactions of an Azo Compound. Journal of the American Chemical Society, 128(51), 16482-16483. doi:10.1021/ja066726y | es_ES |
dc.description.references | Moore, L. R., Cooks, S. M., Anderson, M. S., Schanz, H.-J., Griffin, S. T., Rogers, R. D., … Shaughnessy, K. H. (2006). Synthesis and Characterization of Water-Soluble Silver and Palladium Imidazol-2-ylidene Complexes with Noncoordinating Anionic Substituents. Organometallics, 25(21), 5151-5158. doi:10.1021/om060552b | es_ES |
dc.description.references | Gallego, M. L., Ovejero, P., Cano, M., Heras, J. V., Campo, J. A., Pinilla, E., & Torres, M. R. (2004). (Pyrazole)silver(I) and -gold(I) Complexes with Strong and Weak Hydrogen-Bonding Interactions as the Basis of One- or Two-Dimensional Structures. European Journal of Inorganic Chemistry, 2004(15), 3089-3098. doi:10.1002/ejic.200300947 | es_ES |
dc.description.references | Chui, S. S. Y., Ng, M. F. Y., & Che, C.-M. (2005). Structure Determination of Homoleptic AuI, AgI, and CuI Aryl/Alkylethynyl Coordination Polymers by X-ray Powder Diffraction. Chemistry - A European Journal, 11(6), 1739-1749. doi:10.1002/chem.200400881 | es_ES |
dc.description.references | Pérez-Galán, P., Delpont, N., Herrero-Gómez, E., Maseras, F., & Echavarren, A. M. (2010). Metal-Arene Interactions in Dialkylbiarylphosphane Complexes of Copper, Silver, and Gold. Chemistry - A European Journal, 16(18), 5324-5332. doi:10.1002/chem.200903507 | es_ES |
dc.description.references | Wei, C., Li, Z., & Li, C.-J. (2003). The First Silver-Catalyzed Three-Component Coupling of Aldehyde, Alkyne, and Amine. Organic Letters, 5(23), 4473-4475. doi:10.1021/ol035781y | es_ES |
dc.description.references | Liu, Z., Liao, P., & Bi, X. (2014). General Silver-Catalyzed Hydroazidation of Terminal Alkynes by Combining TMS-N3 and H2O: Synthesis of Vinyl Azides. Organic Letters, 16(14), 3668-3671. doi:10.1021/ol501661k | es_ES |
dc.description.references | Loncaric, C., Manabe, K., & Kobayashi, S. (2003). AgOTf-Catalyzed Aza-Diels–Alder Reactions of Danishefsky’s Diene with Imines in Water. Advanced Synthesis & Catalysis, 345(4), 475-477. doi:10.1002/adsc.200390052 | es_ES |
dc.description.references | Yang, C.-G., Reich, N. W., Shi, Z., & He, C. (2005). Intramolecular Additions of Alcohols and Carboxylic Acids to Inert Olefins Catalyzed by Silver(I) Triflate. Organic Letters, 7(21), 4553-4556. doi:10.1021/ol051065f | es_ES |
dc.description.references | Raducan, M., Rodríguez-Escrich, C., Cambeiro, X. C., Escudero-Adán, E. C., Pericàs, M. A., & Echavarren, A. M. (2011). A multipurpose gold(i) precatalyst. Chemical Communications, 47(17), 4893. doi:10.1039/c1cc10293a | es_ES |
dc.description.references | Das, A., Dash, C., Yousufuddin, M., Celik, M. A., Frenking, G., & Dias, H. V. R. (2012). Isolable Tris(alkyne) and Bis(alkyne) Complexes of Gold(I). Angewandte Chemie International Edition, 51(16), 3940-3943. doi:10.1002/anie.201200080 | es_ES |
dc.description.references | Das, A., Dash, C., Yousufuddin, M., Celik, M. A., Frenking, G., & Dias, H. V. R. (2012). Isolable Tris(alkyne) and Bis(alkyne) Complexes of Gold(I). Angewandte Chemie, 124(16), 4006-4009. doi:10.1002/ange.201200080 | es_ES |
dc.description.references | Römbke, P., Schier, A., & Schmidbaur, H. (2001). Gold(I) organosulfinate and organosulfonate complexes. Journal of the Chemical Society, Dalton Transactions, (17), 2482-2486. doi:10.1039/b104001b | es_ES |
dc.description.references | Yoshida, H., Kageyuki, I., & Takaki, K. (2014). Silver-Catalyzed Highly Regioselective Formal Hydroboration of Alkynes. Organic Letters, 16(13), 3512-3515. doi:10.1021/ol501465x | es_ES |
dc.description.references | Surry, D. S., & Buchwald, S. L. (2008). Biaryl Phosphane Ligands in Palladium-Catalyzed Amination. Angewandte Chemie International Edition, 47(34), 6338-6361. doi:10.1002/anie.200800497 | es_ES |
dc.description.references | Surry, D. S., & Buchwald, S. L. (2008). Biarylphosphanliganden in der palladiumkatalysierten Aminierung. Angewandte Chemie, 120(34), 6438-6461. doi:10.1002/ange.200800497 | es_ES |
dc.description.references | Bieber, L. W., & da Silva, M. F. (2004). Mild and efficient synthesis of propargylamines by copper-catalyzed Mannich reaction. Tetrahedron Letters, 45(45), 8281-8283. doi:10.1016/j.tetlet.2004.09.079 | es_ES |
dc.description.references | Buckley, B. R., Khan, A. N., & Heaney, H. (2012). Mannich Reactions of Alkynes: Mechanistic Insights and the Role of Sub-Stoichiometric Amounts of Alkynylcopper(I) Compounds in the Catalytic Cycle. Chemistry - A European Journal, 18(13), 3855-3858. doi:10.1002/chem.201103987 | es_ES |
dc.description.references | Y. Zhang D. Yu in Method for Preparation of Propargylamines via Cu I -Catalyzed Three Component Coupling Reaction , Patent Number: | es_ES |
dc.description.references | Peshkov, V. A., Pereshivko, O. P., & Van der Eycken, E. V. (2012). A walk around the A3-coupling. Chemical Society Reviews, 41(10), 3790. doi:10.1039/c2cs15356d | es_ES |
dc.description.references | Alaimo, P. J., O’Brien, R., Johnson, A. W., Slauson, S. R., O’Brien, J. M., Tyson, E. L., … Connell, S. (2008). Sustainable Synthetic Methods: Domino Construction of Dihydropyridin-4-ones and β-Amino Esters in Aqueous Ethanol. Organic Letters, 10(22), 5111-5114. doi:10.1021/ol801911f | es_ES |
dc.description.references | Grirrane, A., Álvarez, E., García, H., & Corma, A. (2014). Deactivation of Cationic Cu I and Au I Catalysts for A 3 Coupling by CH 2 Cl 2 : Mechanistic Implications of the Formation of Neutral Cu I and Au I Chlorides. Angewandte Chemie International Edition, 53(28), 7253-7258. doi:10.1002/anie.201403973 | es_ES |
dc.description.references | Grirrane, A., Álvarez, E., García, H., & Corma, A. (2014). Deactivation of Cationic Cu I and Au I Catalysts for A 3 Coupling by CH 2 Cl 2 : Mechanistic Implications of the Formation of Neutral Cu I and Au I Chlorides. Angewandte Chemie, 126(28), 7381-7386. doi:10.1002/ange.201403973 | es_ES |
dc.description.references | Grirrane, A., Álvarez, E., García, H., & Corma, A. (2014). Cationic Copper(I) Complexes as Highly Efficient Catalysts for Single and Double A3-Coupling Mannich Reactions of Terminal Alkynes: Mechanistic Insights and Comparative Studies with Analogous Gold(I) Complexes. Chemistry - A European Journal, 20(44), 14317-14328. doi:10.1002/chem.201403927 | es_ES |
dc.description.references | Grirrane, A., Garcia, H., Corma, A., & Álvarez, E. (2011). Intermolecular [2 + 2] Cycloaddition of Alkyne-Alkene Catalyzed by Au(I) Complexes. What Are the Catalytic Sites Involved? ACS Catalysis, 1(12), 1647-1653. doi:10.1021/cs2004278 | es_ES |
dc.description.references | Grirrane, A., Garcia, H., Corma, A., & Álvarez, E. (2013). Air-Stable, Dinuclear and Tetranuclear σ,π-Acetylide Gold(I) Complexes and Their Catalytic Implications. Chemistry - A European Journal, 19(37), 12239-12244. doi:10.1002/chem.201301623 | es_ES |
dc.description.references | Homs, A., Escofet, I., & Echavarren, A. M. (2013). On the Silver Effect and the Formation of Chloride-Bridged Digold Complexes. Organic Letters, 15(22), 5782-5785. doi:10.1021/ol402825v | es_ES |
dc.description.references | Jiang, Y.-Y., Yu, H.-Z., & Fu, Y. (2014). Theoretical Study on Homogeneous Hydrogen Activation Catalyzed by Cationic Ag(I) Complex. Organometallics, 33(22), 6577-6584. doi:10.1021/om500921d | es_ES |