- -

Spectral characterization of laser-accelerated protons with CR-39 nuclear track detector

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Spectral characterization of laser-accelerated protons with CR-39 nuclear track detector

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Seimetz, Michael es_ES
dc.contributor.author Bellido-Millán, Pablo Jesús es_ES
dc.contributor.author García, P. es_ES
dc.contributor.author Mur, P. es_ES
dc.contributor.author Iborra Carreres, Amadeo es_ES
dc.contributor.author Soriano Asensi, Antonio es_ES
dc.contributor.author Hülber, T. es_ES
dc.contributor.author Garcia Lopez, J. es_ES
dc.contributor.author Jiménez-Ramos, M. C. es_ES
dc.contributor.author Lera, Roberto es_ES
dc.contributor.author Ruiz-de la Cruz, A. es_ES
dc.contributor.author Sánchez, I. es_ES
dc.contributor.author Zaffino, R. es_ES
dc.contributor.author Roso, Luis es_ES
dc.contributor.author Benlloch Baviera, Jose María es_ES
dc.date.accessioned 2020-04-06T08:57:46Z
dc.date.available 2020-04-06T08:57:46Z
dc.date.issued 2018-02 es_ES
dc.identifier.issn 0034-6748 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140257
dc.description.abstract [EN] CR-39 nuclear track material is frequently used for the detection of protons accelerated in laserplasma interactions. The measurement of track densities allows for determination of particle angular distributions, and information on the kinetic energy can be obtained by the use of passive absorbers. We present a precise method of measuring spectral distributions of laser-accelerated protons in a single etching and analysis process. We make use of a one-to-one relation between proton energy and track size and present a precise calibration based on monoenergetic particle beams. While this relation is limited to proton energies below 1 MeV, we show that the range of spectral measurements can be significantly extended by simultaneous use of absorbers of suitable thicknesses. Examples from laser-plasma interactions are presented, and quantitative results on proton energies and particle numbers are compared to those obtained from a time-of-flight detector. The spectrum end points of continuous energy distributions have been determined with both detector types and coincide within 50-100 keV. es_ES
dc.description.sponsorship This work has been developed in close collaboration with Radosys Ltd. (Budapest, Hungary) which provided CR-39 detector material, etching bath container, and readout equipment. The authors highly appreciate the fruitful contribution of the CNA accelerator operators. This project has been funded by the Spanish Ministry for Economy and Competitiveness within the Retos-Colaboracion 2015 initiative, Ref. No. RTC-2015-3278-1. P. Mur has been awarded a Garantia Juvenil grant. es_ES
dc.language Inglés es_ES
dc.publisher American Institute of Physics es_ES
dc.relation.ispartof Review of Scientific Instruments es_ES
dc.rights Reserva de todos los derechos es_ES
dc.title Spectral characterization of laser-accelerated protons with CR-39 nuclear track detector es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.5009587 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTC-2015-3278-1/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.description.bibliographicCitation Seimetz, M.; Bellido-Millán, PJ.; García, P.; Mur, P.; Iborra Carreres, A.; Soriano Asensi, A.; Hülber, T.... (2018). Spectral characterization of laser-accelerated protons with CR-39 nuclear track detector. Review of Scientific Instruments. 89(2):023302-1-023302-7. https://doi.org/10.1063/1.5009587 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1063/1.5009587 es_ES
dc.description.upvformatpinicio 023302-1 es_ES
dc.description.upvformatpfin 023302-7 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 89 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\406182 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Daido, H., Nishiuchi, M., & Pirozhkov, A. S. (2012). Review of laser-driven ion sources and their applications. Reports on Progress in Physics, 75(5), 056401. doi:10.1088/0034-4885/75/5/056401 es_ES
dc.description.references Fuchs, J., Antici, P., d’ Humières, E., Lefebvre, E., Borghesi, M., Brambrink, E., … Audebert, P. (2005). Laser-driven proton scaling laws and new paths towards energy increase. Nature Physics, 2(1), 48-54. doi:10.1038/nphys199 es_ES
dc.description.references Schreiber, J., Bolton, P. R., & Parodi, K. (2016). Invited Review Article: «Hands-on» laser-driven ion acceleration: A primer for laser-driven source development and potential applications. Review of Scientific Instruments, 87(7), 071101. doi:10.1063/1.4959198 es_ES
dc.description.references Prasad, R., Doria, D., Ter-Avetisyan, S., Foster, P. S., Quinn, K. E., Romagnani, L., … Borghesi, M. (2010). Calibration of Thomson parabola—MCP assembly for multi-MeV ion spectroscopy. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 623(2), 712-715. doi:10.1016/j.nima.2010.02.078 es_ES
dc.description.references Yogo, A., Daido, H., Fukumi, A., Li, Z., Ogura, K., Sagisaka, A., … Itoh, A. (2007). Laser prepulse dependency of proton-energy distributions in ultraintense laser-foil interactions with an online time-of-flight technique. Physics of Plasmas, 14(4), 043104. doi:10.1063/1.2721066 es_ES
dc.description.references Bolton, P. R., Borghesi, M., Brenner, C., Carroll, D. C., De Martinis, C., Fiorini, F., … Wilkens, J. J. (2014). Instrumentation for diagnostics and control of laser-accelerated proton (ion) beams. Physica Medica, 30(3), 255-270. doi:10.1016/j.ejmp.2013.09.002 es_ES
dc.description.references Nürnberg, F., Schollmeier, M., Brambrink, E., Blažević, A., Carroll, D. C., Flippo, K., … Roth, M. (2009). Radiochromic film imaging spectroscopy of laser-accelerated proton beams. Review of Scientific Instruments, 80(3), 033301. doi:10.1063/1.3086424 es_ES
dc.description.references Scullion, C., Doria, D., Romagnani, L., Ahmed, H., Alejo, A., Ettlinger, O. C., … Borghesi, M. (2016). Angularly resolved characterization of ion beams from laser-ultrathin foil interactions. Journal of Instrumentation, 11(09), C09020-C09020. doi:10.1088/1748-0221/11/09/c09020 es_ES
dc.description.references Paudel, Y., Frenje, J., Merwin, A., & Galloudec, N. R.-L. (2011). CR39 imaging technique for quick track analysis of particles generated in high-intensity laser target interactions. Journal of Instrumentation, 6(08), T08004-T08004. doi:10.1088/1748-0221/6/08/t08004 es_ES
dc.description.references Kanasaki, M., Jinno, S., Sakaki, H., Kondo, K., Oda, K., Yamauchi, T., & Fukuda, Y. (2016). The precise energy spectra measurement of laser-accelerated MeV/n-class high-Z ions and protons using CR-39 detectors. Plasma Physics and Controlled Fusion, 58(3), 034013. doi:10.1088/0741-3335/58/3/034013 es_ES
dc.description.references Kanasaki, M., Hattori, A., Sakaki, H., Fukuda, Y., Yogo, A., Jinno, S., … Yamauchi, T. (2013). A high energy component of the intense laser-accelerated proton beams detected by stacked CR-39. Radiation Measurements, 50, 46-49. doi:10.1016/j.radmeas.2012.10.009 es_ES
dc.description.references Zigler, A., Eisenman, S., Botton, M., Nahum, E., Schleifer, E., Baspaly, A., … Ledingham, K. W. D. (2013). Enhanced Proton Acceleration by an Ultrashort Laser Interaction with Structured Dynamic Plasma Targets. Physical Review Letters, 110(21). doi:10.1103/physrevlett.110.215004 es_ES
dc.description.references Jeong, T. W., Singh, P. K., Scullion, C., Ahmed, H., Hadjisolomou, P., Jeon, C., … Ter-Avetisyan, S. (2017). CR-39 track detector for multi-MeV ion spectroscopy. Scientific Reports, 7(1). doi:10.1038/s41598-017-02331-w es_ES
dc.description.references Bahrami, F., Mianji, F., Faghihi, R., Taheri, M., & Ansarinejad, A. (2016). Response of CR-39 to 0.9–2.5 MeV protons for KOH and NaOH etching solutions. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 813, 96-101. doi:10.1016/j.nima.2016.01.015 es_ES
dc.description.references Sinenian, N., Rosenberg, M. J., Manuel, M., McDuffee, S. C., Casey, D. T., Zylstra, A. B., … Petrasso, R. D. (2011). The response of CR-39 nuclear track detector to 1–9 MeV protons. Review of Scientific Instruments, 82(10), 103303. doi:10.1063/1.3653549 es_ES
dc.description.references Lee, J. Y., Jo, J. H., Park, S. H., Lee, K., Lee, Y. W., Yea, K.-H., … Jeong, Y. U. (2007). Study on the Tracks in a Nuclear Track Detector (CR39) for Detection of Laser-Induced Charged Particles. Journal of the Korean Physical Society, 51(91), 426. doi:10.3938/jkps.51.426 es_ES
dc.description.references Baccou, C., Yahia, V., Depierreux, S., Neuville, C., Goyon, C., Consoli, F., … Labaune, C. (2015). CR-39 track detector calibration for H, He, and C ions from 0.1-0.5 MeV up to 5 MeV for laser-induced nuclear fusion product identification. Review of Scientific Instruments, 86(8), 083307. doi:10.1063/1.4927684 es_ES
dc.description.references Malinowska, A., Szydłowski, A., Jaskóła, M., Korman, A., Sartowska, B., Kuehn, T., & Kuk, M. (2013). Investigations of protons passing through the CR-39/PM-355 type of solid state nuclear track detectors. Review of Scientific Instruments, 84(7), 073511. doi:10.1063/1.4815833 es_ES
dc.description.references Seimetz, M., Bellido, P., Soriano, A., Garcia Lopez, J., Jimenez-Ramos, M. C., Fernandez, B., … Benlloch, J. M. (2015). Calibration and Performance Tests of Detectors for Laser-Accelerated Protons. IEEE Transactions on Nuclear Science, 62(6), 3216-3224. doi:10.1109/tns.2015.2480682 es_ES
dc.description.references Brun, R., & Rademakers, F. (1997). ROOT — An object oriented data analysis framework. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 389(1-2), 81-86. doi:10.1016/s0168-9002(97)00048-x es_ES
dc.description.references Bellido, P., Lera, R., Seimetz, M., Cruz, A. R. la, Torres-Peirò, S., Galán, M., … Benlloch, J. M. (2017). Characterization of protons accelerated from a 3 TW table-top laser system. Journal of Instrumentation, 12(05), T05001-T05001. doi:10.1088/1748-0221/12/05/t05001 es_ES
dc.description.references Mayer, M. (1999). SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA. AIP Conference Proceedings. doi:10.1063/1.59188 es_ES
dc.description.references Carroll, D. C., Tresca, O., Prasad, R., Romagnani, L., Foster, P. S., Gallegos, P., … McKenna, P. (2010). Carbon ion acceleration from thin foil targets irradiated by ultrahigh-contrast, ultraintense laser pulses. New Journal of Physics, 12(4), 045020. doi:10.1088/1367-2630/12/4/045020 es_ES
dc.description.references Gaillard, S., Fuchs, J., Renard-Le Galloudec, N., & Cowan, T. E. (2007). Study of saturation of CR39 nuclear track detectors at high ion fluence and of associated artifact patterns. Review of Scientific Instruments, 78(1), 013304. doi:10.1063/1.2400020 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem