- -

An Eigenvector Centrality for Multiplex Networks with Data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An Eigenvector Centrality for Multiplex Networks with Data

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pedroche Sánchez, Francisco es_ES
dc.contributor.author Tortosa, Leandro es_ES
dc.contributor.author Vicent Francés, J.F. es_ES
dc.date.accessioned 2020-04-07T05:49:29Z
dc.date.available 2020-04-07T05:49:29Z
dc.date.issued 2019-06 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140415
dc.description.abstract [EN] Networks are useful to describe the structure of many complex systems. Often, understanding these systems implies the analysis of multiple interconnected networks simultaneously, since the system may be modelled by more than one type of interaction. Multiplex networks are structures capable of describing networks in which the same nodes have different links. Characterizing the centrality of nodes in multiplex networks is a fundamental task in network theory. In this paper, we design and discuss a centrality measure for multiplex networks with data, extending the concept of eigenvector centrality. The essential feature that distinguishes this measure is that it calculates the centrality in multiplex networks where the layers show different relationships between nodes and where each layer has a dataset associated with the nodes. The proposed model is based on an eigenvector centrality for networks with data, which is adapted according to the idea behind the two-layer approach PageRank. The core of the centrality proposed is the construction of an irreducible, non-negative and primitive matrix, whose dominant eigenpair provides a node classification. Several examples show the characteristics and possibilities of the new centrality illustrating some applications. es_ES
dc.description.sponsorship This research is partially supported by the Spanish Government, Ministerio de Economia y Competividad, grant number TIN2017-84821-P. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Symmetry (Basel) es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Eigenvector centrality es_ES
dc.subject Networks centrality es_ES
dc.subject Two-layer approach PageRank es_ES
dc.subject Multiplex networks es_ES
dc.subject Biplex networks es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title An Eigenvector Centrality for Multiplex Networks with Data es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/sym11060763 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84821-P/ES/ANALISIS Y VISUALIZACION DE LA CIUDAD COMO UNA RED MULTIPLE DE DATOS Y SU IMPLICACION EN EL TURISMO./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Pedroche Sánchez, F.; Tortosa, L.; Vicent Francés, J. (2019). An Eigenvector Centrality for Multiplex Networks with Data. Symmetry (Basel). 11(6):1-24. https://doi.org/10.3390/sym11060763 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/sym11060763 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 24 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 6 es_ES
dc.identifier.eissn 2073-8994 es_ES
dc.relation.pasarela S\389394 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references De Domenico, M., Granell, C., Porter, M. A., & Arenas, A. (2016). The physics of spreading processes in multilayer networks. Nature Physics, 12(10), 901-906. doi:10.1038/nphys3865 es_ES
dc.description.references De Domenico, M., Solé-Ribalta, A., Cozzo, E., Kivelä, M., Moreno, Y., Porter, M. A., … Arenas, A. (2013). Mathematical Formulation of Multilayer Networks. Physical Review X, 3(4). doi:10.1103/physrevx.3.041022 es_ES
dc.description.references Kivela, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., & Porter, M. A. (2014). Multilayer networks. Journal of Complex Networks, 2(3), 203-271. doi:10.1093/comnet/cnu016 es_ES
dc.description.references Padgett, J. F., & Ansell, C. K. (1993). Robust Action and the Rise of the Medici, 1400-1434. American Journal of Sociology, 98(6), 1259-1319. doi:10.1086/230190 es_ES
dc.description.references Cellai, D., & Bianconi, G. (2016). Multiplex networks with heterogeneous activities of the nodes. Physical Review E, 93(3). doi:10.1103/physreve.93.032302 es_ES
dc.description.references De Domenico, M., Sole-Ribalta, A., Gomez, S., & Arenas, A. (2014). Navigability of interconnected networks under random failures. Proceedings of the National Academy of Sciences, 111(23), 8351-8356. doi:10.1073/pnas.1318469111 es_ES
dc.description.references Cardillo, A., Gómez-Gardeñes, J., Zanin, M., Romance, M., Papo, D., Pozo, F. del, & Boccaletti, S. (2013). Emergence of network features from multiplexity. Scientific Reports, 3(1). doi:10.1038/srep01344 es_ES
dc.description.references De Domenico, M., Lancichinetti, A., Arenas, A., & Rosvall, M. (2015). Identifying Modular Flows on Multilayer Networks Reveals Highly Overlapping Organization in Interconnected Systems. Physical Review X, 5(1). doi:10.1103/physrevx.5.011027 es_ES
dc.description.references Battiston, S., Caldarelli, G., May, R. M., Roukny, T., & Stiglitz, J. E. (2016). The price of complexity in financial networks. Proceedings of the National Academy of Sciences, 113(36), 10031-10036. doi:10.1073/pnas.1521573113 es_ES
dc.description.references Bentley, B., Branicky, R., Barnes, C. L., Chew, Y. L., Yemini, E., Bullmore, E. T., … Schafer, W. R. (2016). The Multilayer Connectome of Caenorhabditis elegans. PLOS Computational Biology, 12(12), e1005283. doi:10.1371/journal.pcbi.1005283 es_ES
dc.description.references Solá, L., Romance, M., Criado, R., Flores, J., García del Amo, A., & Boccaletti, S. (2013). Eigenvector centrality of nodes in multiplex networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 23(3), 033131. doi:10.1063/1.4818544 es_ES
dc.description.references Iacovacci, J., Rahmede, C., Arenas, A., & Bianconi, G. (2016). Functional Multiplex PageRank. EPL (Europhysics Letters), 116(2), 28004. doi:10.1209/0295-5075/116/28004 es_ES
dc.description.references Halu, A., Mondragón, R. J., Panzarasa, P., & Bianconi, G. (2013). Multiplex PageRank. PLoS ONE, 8(10), e78293. doi:10.1371/journal.pone.0078293 es_ES
dc.description.references Solé-Ribalta, A., De Domenico, M., Gómez, S., & Arenas, A. (2014). Centrality rankings in multiplex networks. Proceedings of the 2014 ACM conference on Web science - WebSci ’14. doi:10.1145/2615569.2615687 es_ES
dc.description.references Pedroche, F., Romance, M., & Criado, R. (2016). A biplex approach to PageRank centrality: From classic to multiplex networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(6), 065301. doi:10.1063/1.4952955 es_ES
dc.description.references Agryzkov, T., Curado, M., Pedroche, F., Tortosa, L., & Vicent, J. (2019). Extending the Adapted PageRank Algorithm Centrality to Multiplex Networks with Data Using the PageRank Two-Layer Approach. Symmetry, 11(2), 284. doi:10.3390/sym11020284 es_ES
dc.description.references Agryzkov, T., Tortosa, L., Vicent, J. F., & Wilson, R. (2017). A centrality measure for urban networks based on the eigenvector centrality concept. Environment and Planning B: Urban Analytics and City Science, 46(4), 668-689. doi:10.1177/2399808317724444 es_ES
dc.description.references De Arruda, G. F., Cozzo, E., Peixoto, T. P., Rodrigues, F. A., & Moreno, Y. (2017). Disease Localization in Multilayer Networks. Physical Review X, 7(1). doi:10.1103/physrevx.7.011014 es_ES
dc.description.references Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A. (2013). Recommender systems survey. Knowledge-Based Systems, 46, 109-132. doi:10.1016/j.knosys.2013.03.012 es_ES
dc.description.references Stai, E., Kafetzoglou, S., Tsiropoulou, E. E., & Papavassiliou, S. (2016). A holistic approach for personalization, relevance feedback & recommendation in enriched multimedia content. Multimedia Tools and Applications, 77(1), 283-326. doi:10.1007/s11042-016-4209-1 es_ES
dc.description.references Rabieekenari, L., Sayrafian, K., & Baras, J. S. (2017). Autonomous relocation strategies for cells on wheels in environments with prohibited areas. 2017 IEEE International Conference on Communications (ICC). doi:10.1109/icc.2017.7997091 es_ES
dc.description.references Tsiropoulou, E. E., Koukas, K., & Papavassiliou, S. (2018). A Socio-physical and Mobility-Aware Coalition Formation Mechanism in Public Safety Networks. ICST Transactions on Ubiquitous Environments, 4(13), 154176. doi:10.4108/eai.12-1-2018.154176 es_ES
dc.description.references Bonacich, P. (1987). Power and Centrality: A Family of Measures. American Journal of Sociology, 92(5), 1170-1182. doi:10.1086/228631 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem