Mostrar el registro sencillo del ítem
dc.contributor.author | Pedroche Sánchez, Francisco | es_ES |
dc.contributor.author | Tortosa, Leandro | es_ES |
dc.contributor.author | Vicent Francés, J.F. | es_ES |
dc.date.accessioned | 2020-04-07T05:49:29Z | |
dc.date.available | 2020-04-07T05:49:29Z | |
dc.date.issued | 2019-06 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/140415 | |
dc.description.abstract | [EN] Networks are useful to describe the structure of many complex systems. Often, understanding these systems implies the analysis of multiple interconnected networks simultaneously, since the system may be modelled by more than one type of interaction. Multiplex networks are structures capable of describing networks in which the same nodes have different links. Characterizing the centrality of nodes in multiplex networks is a fundamental task in network theory. In this paper, we design and discuss a centrality measure for multiplex networks with data, extending the concept of eigenvector centrality. The essential feature that distinguishes this measure is that it calculates the centrality in multiplex networks where the layers show different relationships between nodes and where each layer has a dataset associated with the nodes. The proposed model is based on an eigenvector centrality for networks with data, which is adapted according to the idea behind the two-layer approach PageRank. The core of the centrality proposed is the construction of an irreducible, non-negative and primitive matrix, whose dominant eigenpair provides a node classification. Several examples show the characteristics and possibilities of the new centrality illustrating some applications. | es_ES |
dc.description.sponsorship | This research is partially supported by the Spanish Government, Ministerio de Economia y Competividad, grant number TIN2017-84821-P. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Symmetry (Basel) | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Eigenvector centrality | es_ES |
dc.subject | Networks centrality | es_ES |
dc.subject | Two-layer approach PageRank | es_ES |
dc.subject | Multiplex networks | es_ES |
dc.subject | Biplex networks | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | An Eigenvector Centrality for Multiplex Networks with Data | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/sym11060763 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84821-P/ES/ANALISIS Y VISUALIZACION DE LA CIUDAD COMO UNA RED MULTIPLE DE DATOS Y SU IMPLICACION EN EL TURISMO./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Pedroche Sánchez, F.; Tortosa, L.; Vicent Francés, J. (2019). An Eigenvector Centrality for Multiplex Networks with Data. Symmetry (Basel). 11(6):1-24. https://doi.org/10.3390/sym11060763 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/sym11060763 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 24 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 6 | es_ES |
dc.identifier.eissn | 2073-8994 | es_ES |
dc.relation.pasarela | S\389394 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | De Domenico, M., Granell, C., Porter, M. A., & Arenas, A. (2016). The physics of spreading processes in multilayer networks. Nature Physics, 12(10), 901-906. doi:10.1038/nphys3865 | es_ES |
dc.description.references | De Domenico, M., Solé-Ribalta, A., Cozzo, E., Kivelä, M., Moreno, Y., Porter, M. A., … Arenas, A. (2013). Mathematical Formulation of Multilayer Networks. Physical Review X, 3(4). doi:10.1103/physrevx.3.041022 | es_ES |
dc.description.references | Kivela, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., & Porter, M. A. (2014). Multilayer networks. Journal of Complex Networks, 2(3), 203-271. doi:10.1093/comnet/cnu016 | es_ES |
dc.description.references | Padgett, J. F., & Ansell, C. K. (1993). Robust Action and the Rise of the Medici, 1400-1434. American Journal of Sociology, 98(6), 1259-1319. doi:10.1086/230190 | es_ES |
dc.description.references | Cellai, D., & Bianconi, G. (2016). Multiplex networks with heterogeneous activities of the nodes. Physical Review E, 93(3). doi:10.1103/physreve.93.032302 | es_ES |
dc.description.references | De Domenico, M., Sole-Ribalta, A., Gomez, S., & Arenas, A. (2014). Navigability of interconnected networks under random failures. Proceedings of the National Academy of Sciences, 111(23), 8351-8356. doi:10.1073/pnas.1318469111 | es_ES |
dc.description.references | Cardillo, A., Gómez-Gardeñes, J., Zanin, M., Romance, M., Papo, D., Pozo, F. del, & Boccaletti, S. (2013). Emergence of network features from multiplexity. Scientific Reports, 3(1). doi:10.1038/srep01344 | es_ES |
dc.description.references | De Domenico, M., Lancichinetti, A., Arenas, A., & Rosvall, M. (2015). Identifying Modular Flows on Multilayer Networks Reveals Highly Overlapping Organization in Interconnected Systems. Physical Review X, 5(1). doi:10.1103/physrevx.5.011027 | es_ES |
dc.description.references | Battiston, S., Caldarelli, G., May, R. M., Roukny, T., & Stiglitz, J. E. (2016). The price of complexity in financial networks. Proceedings of the National Academy of Sciences, 113(36), 10031-10036. doi:10.1073/pnas.1521573113 | es_ES |
dc.description.references | Bentley, B., Branicky, R., Barnes, C. L., Chew, Y. L., Yemini, E., Bullmore, E. T., … Schafer, W. R. (2016). The Multilayer Connectome of Caenorhabditis elegans. PLOS Computational Biology, 12(12), e1005283. doi:10.1371/journal.pcbi.1005283 | es_ES |
dc.description.references | Solá, L., Romance, M., Criado, R., Flores, J., García del Amo, A., & Boccaletti, S. (2013). Eigenvector centrality of nodes in multiplex networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 23(3), 033131. doi:10.1063/1.4818544 | es_ES |
dc.description.references | Iacovacci, J., Rahmede, C., Arenas, A., & Bianconi, G. (2016). Functional Multiplex PageRank. EPL (Europhysics Letters), 116(2), 28004. doi:10.1209/0295-5075/116/28004 | es_ES |
dc.description.references | Halu, A., Mondragón, R. J., Panzarasa, P., & Bianconi, G. (2013). Multiplex PageRank. PLoS ONE, 8(10), e78293. doi:10.1371/journal.pone.0078293 | es_ES |
dc.description.references | Solé-Ribalta, A., De Domenico, M., Gómez, S., & Arenas, A. (2014). Centrality rankings in multiplex networks. Proceedings of the 2014 ACM conference on Web science - WebSci ’14. doi:10.1145/2615569.2615687 | es_ES |
dc.description.references | Pedroche, F., Romance, M., & Criado, R. (2016). A biplex approach to PageRank centrality: From classic to multiplex networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(6), 065301. doi:10.1063/1.4952955 | es_ES |
dc.description.references | Agryzkov, T., Curado, M., Pedroche, F., Tortosa, L., & Vicent, J. (2019). Extending the Adapted PageRank Algorithm Centrality to Multiplex Networks with Data Using the PageRank Two-Layer Approach. Symmetry, 11(2), 284. doi:10.3390/sym11020284 | es_ES |
dc.description.references | Agryzkov, T., Tortosa, L., Vicent, J. F., & Wilson, R. (2017). A centrality measure for urban networks based on the eigenvector centrality concept. Environment and Planning B: Urban Analytics and City Science, 46(4), 668-689. doi:10.1177/2399808317724444 | es_ES |
dc.description.references | De Arruda, G. F., Cozzo, E., Peixoto, T. P., Rodrigues, F. A., & Moreno, Y. (2017). Disease Localization in Multilayer Networks. Physical Review X, 7(1). doi:10.1103/physrevx.7.011014 | es_ES |
dc.description.references | Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A. (2013). Recommender systems survey. Knowledge-Based Systems, 46, 109-132. doi:10.1016/j.knosys.2013.03.012 | es_ES |
dc.description.references | Stai, E., Kafetzoglou, S., Tsiropoulou, E. E., & Papavassiliou, S. (2016). A holistic approach for personalization, relevance feedback & recommendation in enriched multimedia content. Multimedia Tools and Applications, 77(1), 283-326. doi:10.1007/s11042-016-4209-1 | es_ES |
dc.description.references | Rabieekenari, L., Sayrafian, K., & Baras, J. S. (2017). Autonomous relocation strategies for cells on wheels in environments with prohibited areas. 2017 IEEE International Conference on Communications (ICC). doi:10.1109/icc.2017.7997091 | es_ES |
dc.description.references | Tsiropoulou, E. E., Koukas, K., & Papavassiliou, S. (2018). A Socio-physical and Mobility-Aware Coalition Formation Mechanism in Public Safety Networks. ICST Transactions on Ubiquitous Environments, 4(13), 154176. doi:10.4108/eai.12-1-2018.154176 | es_ES |
dc.description.references | Bonacich, P. (1987). Power and Centrality: A Family of Measures. American Journal of Sociology, 92(5), 1170-1182. doi:10.1086/228631 | es_ES |