- -

Extending the Adapted PageRank Algorithm Centrality to Multiplex Networks with Data Using the PageRank Two-Layer Approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Extending the Adapted PageRank Algorithm Centrality to Multiplex Networks with Data Using the PageRank Two-Layer Approach

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Agryzkov, Taras es_ES
dc.contributor.author Curado, Manuel es_ES
dc.contributor.author Pedroche Sánchez, Francisco es_ES
dc.contributor.author Tortosa, Leandro es_ES
dc.contributor.author Vicent, Jose F. es_ES
dc.date.accessioned 2020-04-07T05:49:31Z
dc.date.available 2020-04-07T05:49:31Z
dc.date.issued 2019-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140416
dc.description.abstract [EN] Usually, the nodes' interactions in many complex networks need a more accurate mapping than simple links. For instance, in social networks, it may be possible to consider different relationships between people. This implies the use of different layers where the nodes are preserved and the relationships are diverse, that is, multiplex networks or biplex networks, for two layers. One major issue in complex networks is the centrality, which aims to classify the most relevant elements in a given system. One of these classic measures of centrality is based on the PageRank classification vector used initially in the Google search engine to order web pages. The PageRank model may be understood as a two-layer network where one layer represents the topology of the network and the other layer is related to teleportation between the nodes. This approach may be extended to define a centrality index for multiplex networks based on the PageRank vector concept. On the other hand, the adapted PageRank algorithm (APA) centrality constitutes a model to obtain the importance of the nodes in a spatial network with the presence of data (both real and virtual). Following the idea of the two-layer approach for PageRank centrality, we can consider the APA centrality under the perspective of a two-layer network where, on the one hand, we keep maintaining the layer of the topological connections of the nodes and, on the other hand, we consider a data layer associated with the network. Following a similar reasoning, we are able to extend the APA model to spatial networks with different layers. The aim of this paper is to propose a centrality measure for biplex networks that extends the adapted PageRank algorithm centrality for spatial networks with data to the PageRank two-layer approach. Finally, we show an example where the ability to analyze data referring to a group of people from different aspects and using different sets of independent data are revealed. es_ES
dc.description.sponsorship This research is partially supported by the Spanish Government, Ministerio de Economia y Competividad, grant number TIN2017-84821-P. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Symmetry (Basel) es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Adapted PageRank algorithm es_ES
dc.subject PageRank vector es_ES
dc.subject Networks centrality es_ES
dc.subject Multiplex networks es_ES
dc.subject Biplex networks es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Extending the Adapted PageRank Algorithm Centrality to Multiplex Networks with Data Using the PageRank Two-Layer Approach es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/sym11020284 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84821-P/ES/ANALISIS Y VISUALIZACION DE LA CIUDAD COMO UNA RED MULTIPLE DE DATOS Y SU IMPLICACION EN EL TURISMO./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Agryzkov, T.; Curado, M.; Pedroche Sánchez, F.; Tortosa, L.; Vicent, JF. (2019). Extending the Adapted PageRank Algorithm Centrality to Multiplex Networks with Data Using the PageRank Two-Layer Approach. Symmetry (Basel). 11(2):1-17. https://doi.org/10.3390/sym11020284 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/sym11020284 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 2073-8994 es_ES
dc.relation.pasarela S\388353 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Clauset, A., Shalizi, C. R., & Newman, M. E. J. (2009). Power-Law Distributions in Empirical Data. SIAM Review, 51(4), 661-703. doi:10.1137/070710111 es_ES
dc.description.references Porter, M. (2012). Small-world network. Scholarpedia, 7(2), 1739. doi:10.4249/scholarpedia.1739 es_ES
dc.description.references BOCCALETTI, S., LATORA, V., MORENO, Y., CHAVEZ, M., & HWANG, D. (2006). Complex networks: Structure and dynamics. Physics Reports, 424(4-5), 175-308. doi:10.1016/j.physrep.2005.10.009 es_ES
dc.description.references Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3-5), 75-174. doi:10.1016/j.physrep.2009.11.002 es_ES
dc.description.references De Domenico, M., Granell, C., Porter, M. A., & Arenas, A. (2016). The physics of spreading processes in multilayer networks. Nature Physics, 12(10), 901-906. doi:10.1038/nphys3865 es_ES
dc.description.references De Domenico, M., Solé-Ribalta, A., Cozzo, E., Kivelä, M., Moreno, Y., Porter, M. A., … Arenas, A. (2013). Mathematical Formulation of Multilayer Networks. Physical Review X, 3(4). doi:10.1103/physrevx.3.041022 es_ES
dc.description.references Kivela, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., & Porter, M. A. (2014). Multilayer networks. Journal of Complex Networks, 2(3), 203-271. doi:10.1093/comnet/cnu016 es_ES
dc.description.references Cellai, D., & Bianconi, G. (2016). Multiplex networks with heterogeneous activities of the nodes. Physical Review E, 93(3). doi:10.1103/physreve.93.032302 es_ES
dc.description.references De Domenico, M., Sole-Ribalta, A., Gomez, S., & Arenas, A. (2014). Navigability of interconnected networks under random failures. Proceedings of the National Academy of Sciences, 111(23), 8351-8356. doi:10.1073/pnas.1318469111 es_ES
dc.description.references Padgett, J. F., & Ansell, C. K. (1993). Robust Action and the Rise of the Medici, 1400-1434. American Journal of Sociology, 98(6), 1259-1319. doi:10.1086/230190 es_ES
dc.description.references Cardillo, A., Gómez-Gardeñes, J., Zanin, M., Romance, M., Papo, D., Pozo, F. del, & Boccaletti, S. (2013). Emergence of network features from multiplexity. Scientific Reports, 3(1). doi:10.1038/srep01344 es_ES
dc.description.references De Domenico, M., Lancichinetti, A., Arenas, A., & Rosvall, M. (2015). Identifying Modular Flows on Multilayer Networks Reveals Highly Overlapping Organization in Interconnected Systems. Physical Review X, 5(1). doi:10.1103/physrevx.5.011027 es_ES
dc.description.references Battiston, S., Caldarelli, G., May, R. M., Roukny, T., & Stiglitz, J. E. (2016). The price of complexity in financial networks. Proceedings of the National Academy of Sciences, 113(36), 10031-10036. doi:10.1073/pnas.1521573113 es_ES
dc.description.references Bentley, B., Branicky, R., Barnes, C. L., Chew, Y. L., Yemini, E., Bullmore, E. T., … Schafer, W. R. (2016). The Multilayer Connectome of Caenorhabditis elegans. PLOS Computational Biology, 12(12), e1005283. doi:10.1371/journal.pcbi.1005283 es_ES
dc.description.references Solá, L., Romance, M., Criado, R., Flores, J., García del Amo, A., & Boccaletti, S. (2013). Eigenvector centrality of nodes in multiplex networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 23(3), 033131. doi:10.1063/1.4818544 es_ES
dc.description.references Iacovacci, J., Rahmede, C., Arenas, A., & Bianconi, G. (2016). Functional Multiplex PageRank. EPL (Europhysics Letters), 116(2), 28004. doi:10.1209/0295-5075/116/28004 es_ES
dc.description.references Bonacich, P. (1987). Power and Centrality: A Family of Measures. American Journal of Sociology, 92(5), 1170-1182. doi:10.1086/228631 es_ES
dc.description.references Bonacich, P. (1991). Simultaneous group and individual centralities. Social Networks, 13(2), 155-168. doi:10.1016/0378-8733(91)90018-o es_ES
dc.description.references Ghoshal, G., & Barabási, A.-L. (2011). Ranking stability and super-stable nodes in complex networks. Nature Communications, 2(1). doi:10.1038/ncomms1396 es_ES
dc.description.references Cristelli, M., Gabrielli, A., Tacchella, A., Caldarelli, G., & Pietronero, L. (2013). Measuring the Intangibles: A Metrics for the Economic Complexity of Countries and Products. PLoS ONE, 8(8), e70726. doi:10.1371/journal.pone.0070726 es_ES
dc.description.references Crucitti, P., Latora, V., & Porta, S. (2006). Centrality measures in spatial networks of urban streets. Physical Review E, 73(3). doi:10.1103/physreve.73.036125 es_ES
dc.description.references Agryzkov, T., Oliver, J. L., Tortosa, L., & Vicent, J. F. (2012). An algorithm for ranking the nodes of an urban network based on the concept of PageRank vector. Applied Mathematics and Computation, 219(4), 2186-2193. doi:10.1016/j.amc.2012.08.064 es_ES
dc.description.references Berkhin, P. (2005). A Survey on PageRank Computing. Internet Mathematics, 2(1), 73-120. doi:10.1080/15427951.2005.10129098 es_ES
dc.description.references Halu, A., Mondragón, R. J., Panzarasa, P., & Bianconi, G. (2013). Multiplex PageRank. PLoS ONE, 8(10), e78293. doi:10.1371/journal.pone.0078293 es_ES
dc.description.references Solé-Ribalta, A., De Domenico, M., Gómez, S., & Arenas, A. (2014). Centrality rankings in multiplex networks. Proceedings of the 2014 ACM conference on Web science - WebSci ’14. doi:10.1145/2615569.2615687 es_ES
dc.description.references Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A. (2013). Recommender systems survey. Knowledge-Based Systems, 46, 109-132. doi:10.1016/j.knosys.2013.03.012 es_ES
dc.description.references Stai, E., Kafetzoglou, S., Tsiropoulou, E. E., & Papavassiliou, S. (2016). A holistic approach for personalization, relevance feedback & recommendation in enriched multimedia content. Multimedia Tools and Applications, 77(1), 283-326. doi:10.1007/s11042-016-4209-1 es_ES
dc.description.references Rabieekenari, L., Sayrafian, K., & Baras, J. S. (2017). Autonomous relocation strategies for cells on wheels in environments with prohibited areas. 2017 IEEE International Conference on Communications (ICC). doi:10.1109/icc.2017.7997091 es_ES
dc.description.references Tsiropoulou, E. E., Koukas, K., & Papavassiliou, S. (2018). A Socio-physical and Mobility-Aware Coalition Formation Mechanism in Public Safety Networks. ICST Transactions on Ubiquitous Environments, 4(13), 154176. doi:10.4108/eai.12-1-2018.154176 es_ES
dc.description.references Pedroche, F., Romance, M., & Criado, R. (2016). A biplex approach to PageRank centrality: From classic to multiplex networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(6), 065301. doi:10.1063/1.4952955 es_ES
dc.description.references Agryzkov, T., Tortosa, L., Vicent, J. F., & Wilson, R. (2017). A centrality measure for urban networks based on the eigenvector centrality concept. Environment and Planning B: Urban Analytics and City Science, 46(4), 668-689. doi:10.1177/2399808317724444 es_ES
dc.description.references Agryzkov, T., Pedroche, F., Tortosa, L., & Vicent, J. (2018). Combining the Two-Layers PageRank Approach with the APA Centrality in Networks with Data. ISPRS International Journal of Geo-Information, 7(12), 480. doi:10.3390/ijgi7120480 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem