Penrose, R. (1955). A generalized inverse for matrices. Mathematical Proceedings of the Cambridge Philosophical Society, 51(3), 406-413. doi:10.1017/s0305004100030401
Baksalary, O. M., & Trenkler, G. (2010). Core inverse of matrices. Linear and Multilinear Algebra, 58(6), 681-697. doi:10.1080/03081080902778222
Mary, X. (2011). On generalized inverses and Green’s relations. Linear Algebra and its Applications, 434(8), 1836-1844. doi:10.1016/j.laa.2010.11.045
[+]
Penrose, R. (1955). A generalized inverse for matrices. Mathematical Proceedings of the Cambridge Philosophical Society, 51(3), 406-413. doi:10.1017/s0305004100030401
Baksalary, O. M., & Trenkler, G. (2010). Core inverse of matrices. Linear and Multilinear Algebra, 58(6), 681-697. doi:10.1080/03081080902778222
Mary, X. (2011). On generalized inverses and Green’s relations. Linear Algebra and its Applications, 434(8), 1836-1844. doi:10.1016/j.laa.2010.11.045
Benitez, J., Boasso, E., & Jin, H. (2017). ON ONE-SIDED (B;C)-INVERSES OF ARBITRARY MATRICES. The Electronic Journal of Linear Algebra, 32, 391-422. doi:10.13001/1081-3810.3487
Drazin, M. P. (2012). A class of outer generalized inverses. Linear Algebra and its Applications, 436(7), 1909-1923. doi:10.1016/j.laa.2011.09.004
Boasso, E., & Kantún-Montiel, G. (2017). The (b, c)-Inverse in Rings and in the Banach Context. Mediterranean Journal of Mathematics, 14(3). doi:10.1007/s00009-017-0910-1
Drazin, M. P. (2016). Left and right generalized inverses. Linear Algebra and its Applications, 510, 64-78. doi:10.1016/j.laa.2016.08.010
Ke, Y., Cvetković-Ilić, D. S., Chen, J., & Višnjić, J. (2017). New results on (b, c)–inverses. Linear and Multilinear Algebra, 66(3), 447-458. doi:10.1080/03081087.2017.1301362
Rakić, D. S. (2017). A note on Rao and Mitra’s constrained inverse and Drazin’s ( b , c ) inverse. Linear Algebra and its Applications, 523, 102-108. doi:10.1016/j.laa.2017.02.025
Wang, L., Castro-Gonzalez, N., & Chen, J. (2017). Characterizations of Outer Generalized Inverses. Canadian Mathematical Bulletin, 60(4), 861-871. doi:10.4153/cmb-2016-080-5
Xu, S., & Benítez, J. (2018). Existence Criteria and Expressions of the (b, c)-Inverse in Rings and Their Applications. Mediterranean Journal of Mathematics, 15(1). doi:10.1007/s00009-017-1056-x
Rakić, D. S., Dinčić, N. Č., & Djordjević, D. S. (2014). Group, Moore–Penrose, core and dual core inverse in rings with involution. Linear Algebra and its Applications, 463, 115-133. doi:10.1016/j.laa.2014.09.003
Liu, Y., & Wei, M. (2004). Rank equalities for submatrices in generalized inverse MT,S(2) of M. Applied Mathematics and Computation, 152(2), 499-504. doi:10.1016/s0096-3003(03)00572-1
Liu, Y., & Wei, M. (2004). Rank equalities related to the generalized inverses AT,S(2), BT1,S1(2) of two matrices A and B. Applied Mathematics and Computation, 159(1), 19-28. doi:10.1016/j.amc.2003.08.124
Wei, Y. (1998). A characterization and representation of the generalized inverse A(2)T,S and its applications. Linear Algebra and its Applications, 280(2-3), 87-96. doi:10.1016/s0024-3795(98)00008-1
Matsaglia, G., & P. H. Styan, G. (1974). Equalities and Inequalities for Ranks of Matrices†. Linear and Multilinear Algebra, 2(3), 269-292. doi:10.1080/03081087408817070
Tian, Y., & Styan, G. P. H. (2001). Rank equalities for idempotent and involutary matrices. Linear Algebra and its Applications, 335(1-3), 101-117. doi:10.1016/s0024-3795(01)00297-x
Benítez, J., & Rakočević, V. (2010). Matrices A such that AA†−A†A are nonsingular. Applied Mathematics and Computation, 217(7), 3493-3503. doi:10.1016/j.amc.2010.09.022
[-]