- -

Rank Equalities Related to the Generalized Inverses A(B1,C1), D(B2,C2) of Two Matrices A and D

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Rank Equalities Related to the Generalized Inverses A(B1,C1), D(B2,C2) of Two Matrices A and D

Mostrar el registro completo del ítem

Wang, W.; Xu, S.; Benítez López, J. (2019). Rank Equalities Related to the Generalized Inverses A(B1,C1), D(B2,C2) of Two Matrices A and D. Symmetry (Basel). 11(4):1-24. https://doi.org/10.3390/sym11040539

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140417

Ficheros en el ítem

Metadatos del ítem

Título: Rank Equalities Related to the Generalized Inverses A(B1,C1), D(B2,C2) of Two Matrices A and D
Autor: Wang, Wenjie Xu, Sanzhang Benítez López, Julio
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] Let A be an complex matrix. The (B,C)-inverse A vertical bar(B,C) of A was introduced by Drazin in 2012. For given matrices A and B, several rank equalities related to A vertical bar(B1,C1) and B vertical bar(B2,C2) ...[+]
Palabras clave: Rank , (B, C)-inverse , Inverse along an element
Derechos de uso: Reconocimiento (by)
Fuente:
Symmetry (Basel). (eissn: 2073-8994 )
DOI: 10.3390/sym11040539
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/sym11040539
Agradecimientos:
The second author is grateful to China Scholarship Council for giving him a scholarship for his further study in Universitat Politecnica de Valencia, Spain.
Tipo: Artículo

References

Penrose, R. (1955). A generalized inverse for matrices. Mathematical Proceedings of the Cambridge Philosophical Society, 51(3), 406-413. doi:10.1017/s0305004100030401

Baksalary, O. M., & Trenkler, G. (2010). Core inverse of matrices. Linear and Multilinear Algebra, 58(6), 681-697. doi:10.1080/03081080902778222

Mary, X. (2011). On generalized inverses and Green’s relations. Linear Algebra and its Applications, 434(8), 1836-1844. doi:10.1016/j.laa.2010.11.045 [+]
Penrose, R. (1955). A generalized inverse for matrices. Mathematical Proceedings of the Cambridge Philosophical Society, 51(3), 406-413. doi:10.1017/s0305004100030401

Baksalary, O. M., & Trenkler, G. (2010). Core inverse of matrices. Linear and Multilinear Algebra, 58(6), 681-697. doi:10.1080/03081080902778222

Mary, X. (2011). On generalized inverses and Green’s relations. Linear Algebra and its Applications, 434(8), 1836-1844. doi:10.1016/j.laa.2010.11.045

Benitez, J., Boasso, E., & Jin, H. (2017). ON ONE-SIDED (B;C)-INVERSES OF ARBITRARY MATRICES. The Electronic Journal of Linear Algebra, 32, 391-422. doi:10.13001/1081-3810.3487

Drazin, M. P. (2012). A class of outer generalized inverses. Linear Algebra and its Applications, 436(7), 1909-1923. doi:10.1016/j.laa.2011.09.004

Boasso, E., & Kantún-Montiel, G. (2017). The (b, c)-Inverse in Rings and in the Banach Context. Mediterranean Journal of Mathematics, 14(3). doi:10.1007/s00009-017-0910-1

Drazin, M. P. (2016). Left and right generalized inverses. Linear Algebra and its Applications, 510, 64-78. doi:10.1016/j.laa.2016.08.010

Ke, Y., Cvetković-Ilić, D. S., Chen, J., & Višnjić, J. (2017). New results on (b, c)–inverses. Linear and Multilinear Algebra, 66(3), 447-458. doi:10.1080/03081087.2017.1301362

Rakić, D. S. (2017). A note on Rao and Mitra’s constrained inverse and Drazin’s ( b , c ) inverse. Linear Algebra and its Applications, 523, 102-108. doi:10.1016/j.laa.2017.02.025

Wang, L., Castro-Gonzalez, N., & Chen, J. (2017). Characterizations of Outer Generalized Inverses. Canadian Mathematical Bulletin, 60(4), 861-871. doi:10.4153/cmb-2016-080-5

Xu, S., & Benítez, J. (2018). Existence Criteria and Expressions of the (b, c)-Inverse in Rings and Their Applications. Mediterranean Journal of Mathematics, 15(1). doi:10.1007/s00009-017-1056-x

Rakić, D. S., Dinčić, N. Č., & Djordjević, D. S. (2014). Group, Moore–Penrose, core and dual core inverse in rings with involution. Linear Algebra and its Applications, 463, 115-133. doi:10.1016/j.laa.2014.09.003

Liu, Y., & Wei, M. (2004). Rank equalities for submatrices in generalized inverse MT,S(2) of M. Applied Mathematics and Computation, 152(2), 499-504. doi:10.1016/s0096-3003(03)00572-1

Liu, Y., & Wei, M. (2004). Rank equalities related to the generalized inverses AT,S(2), BT1,S1(2) of two matrices A and B. Applied Mathematics and Computation, 159(1), 19-28. doi:10.1016/j.amc.2003.08.124

Wei, Y. (1998). A characterization and representation of the generalized inverse A(2)T,S and its applications. Linear Algebra and its Applications, 280(2-3), 87-96. doi:10.1016/s0024-3795(98)00008-1

Matsaglia, G., & P. H. Styan, G. (1974). Equalities and Inequalities for Ranks of Matrices†. Linear and Multilinear Algebra, 2(3), 269-292. doi:10.1080/03081087408817070

Tian, Y., & Styan, G. P. H. (2001). Rank equalities for idempotent and involutary matrices. Linear Algebra and its Applications, 335(1-3), 101-117. doi:10.1016/s0024-3795(01)00297-x

Benítez, J., & Rakočević, V. (2010). Matrices A such that AA†−A†A are nonsingular. Applied Mathematics and Computation, 217(7), 3493-3503. doi:10.1016/j.amc.2010.09.022

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem