Mostrar el registro sencillo del ítem
dc.contributor.author | Díaz García, Sarai | es_ES |
dc.date.accessioned | 2020-04-07T08:56:19Z | |
dc.date.available | 2020-04-07T08:56:19Z | |
dc.date.issued | 2015-04-30 | |
dc.identifier.issn | 1134-2196 | |
dc.identifier.uri | http://hdl.handle.net/10251/140430 | |
dc.description.abstract | [EN] The ease of rubber weirs to adapt themselves to different flow conditions makes them interesting for placement over spillway profiles, allowing to increase the stored volume in ordinary operation without compromising the dam’s response in case of flooding. The objective of this study is to analyze the effect of locating an inflatable weir over a spillway profile in what regards its hydraulic response. With this purpose, an experimental and a numerical CFD model of a WES original spillway profile are developed, to then include an EPDM weir whose effect is analyzed for different inflation levels. Numerical and experimental results are close and highlight significant variations in the pressure distribution along the spillway, with aeration playing a significant role. This study concludes that the placement of this particular inflatable weir has an overall positive result if conveniently undertaken, but additional studies with different geometries are required to delve in the topic. | es_ES |
dc.description.abstract | [ES] La facilidad de las compuertas inflables para adaptarse a distintas condiciones de flujo las hace interesantes para su ubicación en vertederos de presa, permitiendo aumentar el volumen embalsado en explotación ordinaria, y permitiendo el desinflado y restauración de la geometría original en situación extraordinaria. El objetivo de este estudio es analizar el efecto de la colocación de una compuerta inflable sobre un aliviadero en lo que respecta a su comportamiento hidráulico. Para ello, se desarrollan un modelo físico y un modelo numérico (CFD) del cuerpo de un aliviadero WES original, incorporándose luego una compuerta EPDM cuyo efecto se analiza para distintos niveles de inflado. Los resultados numéricos y experimentales son similares y ponen de manifiesto variaciones significativas en la distribución de presiones a lo largo del vertedero, siendo determinante la aireación. Este estudio concluye que la colocación de esta compuerta particular tiene un efecto global positivo si se real | es_ES |
dc.description.sponsorship | La autora quiere dar las gracias a la Junta de Comunidades de Castilla-La Mancha (JCCM) por la financiación proporcionada a través de una beca FPI para el periodo 2014-2016 | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Ingeniería del agua | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Compuerta inflable | es_ES |
dc.subject | Aliviadero | es_ES |
dc.subject | CFD | es_ES |
dc.subject | Modelación experimental | es_ES |
dc.subject | Aireación bajo chorro | es_ES |
dc.subject | Inflatable weir | es_ES |
dc.subject | Spillway profile | es_ES |
dc.subject | Experimental model | es_ES |
dc.subject | Under water jet aeration | es_ES |
dc.title | Análisis de los efectos hidráulicos asociados a la colocación de una compuerta inflable sobre un aliviadero mediante modelación física y numérica (CFD) | es_ES |
dc.title.alternative | Analysis of the hydraulic effects associated to the location of an inflatable rubber weir over a spillway profile through experimental and numerical (CFD) model | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/ia.2015.3623 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Díaz García, S. (2015). Análisis de los efectos hidráulicos asociados a la colocación de una compuerta inflable sobre un aliviadero mediante modelación física y numérica (CFD). Ingeniería del agua. 19(2):89-104. https://doi.org/10.4995/ia.2015.3623 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/ia.2015.3623 | es_ES |
dc.description.upvformatpinicio | 89 | es_ES |
dc.description.upvformatpfin | 104 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1886-4996 | |
dc.relation.pasarela | OJS\3623 | es_ES |
dc.contributor.funder | Junta de Comunidades de Castilla-La Mancha | es_ES |
dc.description.references | Alhamati, A.A.N., Mohammed, T.A., Ghazali, A.H., Norzaie, J., Al-Jumaily, K.K. 2005. Determination of coefficient of discharge for air-inflated dam using physical model. Suranaree Journal of Science and Technology 12(1), 19-27. | es_ES |
dc.description.references | Al-Shami, A. 1983. Theory and design of inflatable structures. PhD thesis, University of Sheffield, Sheffield, United Kingdom. | es_ES |
dc.description.references | Alwan, A.D. 1979. The analysis and design of inflatable dams. PhD thesis, University of Sheffield, Sheffield, United Kingdom. | es_ES |
dc.description.references | Andersson, A.G., Andreasson, P., Lundström, T.S. 2013. CFD-modelling and validation of free surface flow during spilling of reservoir in down-scale model. Engineering Applications of Computational Fluids 7(1), 159-167. | es_ES |
dc.description.references | Anwar, H.O. 1967. Inflatable dams. Journal of Hydraulic Divison-ASCE 93(HY3), 99-119. | es_ES |
dc.description.references | Bardina, J.E., Huang, P.G., Coakley, T.J. 1997. Turbulence modelling validation, testing and development. Ames Research Center, California, USA. | es_ES |
dc.description.references | Binnie, G.M., Thomas, A.R., Gwyther,J.R. 1973. Inflatable weir used during construction of Mangla Dam. Proceedings of the Institution of Civil Engineers Part 1- Design and Construction 54, 629-639. | es_ES |
dc.description.references | Chanson, H. 1997. A review of the overflow of inflatable flexible membrane dams. Australasian Civil/Structural Engineering Transactions CE39(2-3), 107-116. | es_ES |
dc.description.references | Chanson, H. 1998. Hydraulics of rubber dam overflow: a simple design approach. 13th Australasian Fluid Mechanics Conference, Melbourne, Australia, 255-258. | es_ES |
dc.description.references | Cheraghi-Shirazi, N., Kabiri-Samani, A.R., Boroomand, B. 2014. Numerical analysis of rubber dams using fluid-structure interactions. Flow Measurement and Instrumentation 40, 91-98. | es_ES |
dc.description.references | Feurich, R., Olsen, N.B.R. 2012. Finding free surface of supercritical flows - numerical investigation. Engineering Applications of Computational Fluid Mechanics 6(2), 307-315. | es_ES |
dc.description.references | Gebhardt, M. 2006. Hydraulische und statische Bemessung von Schlauchwehren, Heft 235. Ed. Universitätverlag Karlsruhe, Karlsruhe, Germany. | es_ES |
dc.description.references | Gebhardt, M. 2007. Stand der Schlauchwehrtechnik, Anwendungsbeispiele und Betriebserfahrungen. Mitteilungsblatt der Bundesanstalt für Wasswerbau 91, 47-56. | es_ES |
dc.description.references | Ghavanloo, E., Daneshmand, F. 2010. Analytical analysis of the static interaction of fluid and cylindrical membrane structures. European Journal of Mechanics - A/Solids 29(4), 600-610. | es_ES |
dc.description.references | Hassler, M., Schweizerhof, K. 2008. On the static interaction of fluid and gas loaded multi-chamber systems in large deformation finite element analysis. Computational Methods Applied Mechanical Engineering 197(19), 1725-1749. | es_ES |
dc.description.references | Karimpour, A., Kaye, N., Khan, A. 2011. CFD study of merging turbulent plane jets. Journal of Hydraulic Engineering - ASCE 137(3), 381-385. | es_ES |
dc.description.references | Khatsuria, R.M. 2004. Ogee or overflow spillways. In: Hydraulics of Spillways and Energy Dissipators. CRC Press, NY, USA. | es_ES |
dc.description.references | León, A.S., Liu, X., Ghidaoui, M.S., Schmidt, A.R., García, M.H. 2010. Junction and drop-shaft boundary conditions for modeling free-surface, pressurized, and mixed free-surface pressurized transient flows. Journal of Hydraulic Engineering - ASCE 136(10), 705-715. | es_ES |
dc.description.references | Novak, P., Moffat, A.I.B., Nalluri, C., Narayanan, R. 2007. Dam outlet works. In: Hydraulic structures-Fourth Edition. Taylor & Francis, NY, USA. | es_ES |
dc.description.references | Shepherd, E.M., McKay, F.A., Hodgens, V.T. 1969. The fabridam extension on Koombooloomba Dam of the Tully Falls hydroelectric-power project. Journal of the Institution of Engineers (Australia) 41, 1-7. | es_ES |
dc.description.references | Soares, C., Noriler, D., Maciel, M., Barros, A., Meier, H. 2013. Verification and validation in CFD for a free-surface gas-liquid flow in channels. Brazilian Journal of Chemical Engineering 30(2), 323-335. | es_ES |
dc.description.references | Watson, L.T., Suherman, S., Plaut, R.H. 1999. Two-dimensional elastic analysis of equilibrium shapes of single-anchor inflatable dams. International Journal of Solids and Structures 36, 1383-1398. | es_ES |
dc.description.references | Zhang, X.Q., Tam, P.W.N., Zheng, W. 2002. Construction, operation and maintenance of rubber dams. Canadian Journal of Civil Engineering 29(3), 409-420. | es_ES |
dc.description.references | Zhao, C.H., Zhu, D.Z., Rajaratnam, N. 2008. Computational and experimental study of surcharged flow at a 90º combining sewer junction. Journal of Hydraulic Engineering - ASCE 134(6), 688-700. | es_ES |