Fecarotta, O., Carravetta, A., Morani, M., & Padulano, R. (2018). Optimal Pump Scheduling for Urban Drainage under Variable Flow Conditions. Resources, 7(4), 73. doi:10.3390/resources7040073
Creaco, E., & Pezzinga, G. (2018). Comparison of Algorithms for the Optimal Location of Control Valves for Leakage Reduction in WDNs. Water, 10(4), 466. doi:10.3390/w10040466
Nguyen, K. A., Stewart, R. A., Zhang, H., Sahin, O., & Siriwardene, N. (2018). Re-engineering traditional urban water management practices with smart metering and informatics. Environmental Modelling & Software, 101, 256-267. doi:10.1016/j.envsoft.2017.12.015
[+]
Fecarotta, O., Carravetta, A., Morani, M., & Padulano, R. (2018). Optimal Pump Scheduling for Urban Drainage under Variable Flow Conditions. Resources, 7(4), 73. doi:10.3390/resources7040073
Creaco, E., & Pezzinga, G. (2018). Comparison of Algorithms for the Optimal Location of Control Valves for Leakage Reduction in WDNs. Water, 10(4), 466. doi:10.3390/w10040466
Nguyen, K. A., Stewart, R. A., Zhang, H., Sahin, O., & Siriwardene, N. (2018). Re-engineering traditional urban water management practices with smart metering and informatics. Environmental Modelling & Software, 101, 256-267. doi:10.1016/j.envsoft.2017.12.015
Adamowski, J., & Karapataki, C. (2010). Comparison of Multivariate Regression and Artificial Neural Networks for Peak Urban Water-Demand Forecasting: Evaluation of Different ANN Learning Algorithms. Journal of Hydrologic Engineering, 15(10), 729-743. doi:10.1061/(asce)he.1943-5584.0000245
Caiado, J. (2010). Performance of Combined Double Seasonal Univariate Time Series Models for Forecasting Water Demand. Journal of Hydrologic Engineering, 15(3), 215-222. doi:10.1061/(asce)he.1943-5584.0000182
Herrera, M., Torgo, L., Izquierdo, J., & Pérez-García, R. (2010). Predictive models for forecasting hourly urban water demand. Journal of Hydrology, 387(1-2), 141-150. doi:10.1016/j.jhydrol.2010.04.005
Msiza, I. S., Nelwamondo, F. V., & Marwala, T. (2008). Water Demand Prediction using Artificial Neural Networks and Support Vector Regression. Journal of Computers, 3(11). doi:10.4304/jcp.3.11.1-8
Tiwari, M., Adamowski, J., & Adamowski, K. (2016). Water demand forecasting using extreme learning machines. Journal of Water and Land Development, 28(1), 37-52. doi:10.1515/jwld-2016-0004
Vijayalaksmi, D. P., & Babu, K. S. J. (2015). Water Supply System Demand Forecasting Using Adaptive Neuro-fuzzy Inference System. Aquatic Procedia, 4, 950-956. doi:10.1016/j.aqpro.2015.02.119
Zhou, L., Xia, J., Yu, L., Wang, Y., Shi, Y., Cai, S., & Nie, S. (2016). Using a Hybrid Model to Forecast the Prevalence of Schistosomiasis in Humans. International Journal of Environmental Research and Public Health, 13(4), 355. doi:10.3390/ijerph13040355
Cadenas, E., Rivera, W., Campos-Amezcua, R., & Heard, C. (2016). Wind Speed Prediction Using a Univariate ARIMA Model and a Multivariate NARX Model. Energies, 9(2), 109. doi:10.3390/en9020109
Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159-175. doi:10.1016/s0925-2312(01)00702-0
Herrera, M., García-Díaz, J. C., Izquierdo, J., & Pérez-García, R. (2011). Municipal Water Demand Forecasting: Tools for Intervention Time Series. Stochastic Analysis and Applications, 29(6), 998-1007. doi:10.1080/07362994.2011.610161
Khashei, M., & Bijari, M. (2011). A novel hybridization of artificial neural networks and ARIMA models for time series forecasting. Applied Soft Computing, 11(2), 2664-2675. doi:10.1016/j.asoc.2010.10.015
Campisi-Pinto, S., Adamowski, J., & Oron, G. (2012). Forecasting Urban Water Demand Via Wavelet-Denoising and Neural Network Models. Case Study: City of Syracuse, Italy. Water Resources Management, 26(12), 3539-3558. doi:10.1007/s11269-012-0089-y
Brentan, B. M., Luvizotto Jr., E., Herrera, M., Izquierdo, J., & Pérez-García, R. (2017). Hybrid regression model for near real-time urban water demand forecasting. Journal of Computational and Applied Mathematics, 309, 532-541. doi:10.1016/j.cam.2016.02.009
Di Nardo, A., Di Natale, M., Musmarra, D., Santonastaso, G. F., Tzatchkov, V., & Alcocer-Yamanaka, V. H. (2014). Dual-use value of network partitioning for water system management and protection from malicious contamination. Journal of Hydroinformatics, 17(3), 361-376. doi:10.2166/hydro.2014.014
Scarpa, F., Lobba, A., & Becciu, G. (2016). Elementary DMA Design of Looped Water Distribution Networks with Multiple Sources. Journal of Water Resources Planning and Management, 142(6), 04016011. doi:10.1061/(asce)wr.1943-5452.0000639
Panagopoulos, G. P., Bathrellos, G. D., Skilodimou, H. D., & Martsouka, F. A. (2012). Mapping Urban Water Demands Using Multi-Criteria Analysis and GIS. Water Resources Management, 26(5), 1347-1363. doi:10.1007/s11269-011-9962-3
Buchberger, S. G., & Nadimpalli, G. (2004). Leak Estimation in Water Distribution Systems by Statistical Analysis of Flow Readings. Journal of Water Resources Planning and Management, 130(4), 321-329. doi:10.1061/(asce)0733-9496(2004)130:4(321)
Candelieri, A. (2017). Clustering and Support Vector Regression for Water Demand Forecasting and Anomaly Detection. Water, 9(3), 224. doi:10.3390/w9030224
Padulano, R., & Del Giudice, G. (2018). Pattern Detection and Scaling Laws of Daily Water Demand by SOM: an Application to the WDN of Naples, Italy. Water Resources Management, 33(2), 739-755. doi:10.1007/s11269-018-2140-0
Bloetscher, F. (2012). Protecting People, Infrastructure, Economies, and Ecosystem Assets: Water Management in the Face of Climate Change. Water, 4(2), 367-388. doi:10.3390/w4020367
Bach, P. M., Rauch, W., Mikkelsen, P. S., McCarthy, D. T., & Deletic, A. (2014). A critical review of integrated urban water modelling – Urban drainage and beyond. Environmental Modelling & Software, 54, 88-107. doi:10.1016/j.envsoft.2013.12.018
Goltsev, A. V., Dorogovtsev, S. N., Oliveira, J. G., & Mendes, J. F. F. (2012). Localization and Spreading of Diseases in Complex Networks. Physical Review Letters, 109(12). doi:10.1103/physrevlett.109.128702
Danila, B., Yu, Y., Marsh, J. A., & Bassler, K. E. (2006). Optimal transport on complex networks. Physical Review E, 74(4). doi:10.1103/physreve.74.046106
Herrera, M., Izquierdo, J., Pérez-García, R., & Montalvo, I. (2012). Multi-agent adaptive boosting on semi-supervised water supply clusters. Advances in Engineering Software, 50, 131-136. doi:10.1016/j.advengsoft.2012.02.005
Maslov, S., Sneppen, K., & Zaliznyak, A. (2004). Detection of topological patterns in complex networks: correlation profile of the internet. Physica A: Statistical Mechanics and its Applications, 333, 529-540. doi:10.1016/j.physa.2003.06.002
Lloyd, A. L., & Valeika, S. (2007). Network models in epidemiology: an overview. World Scientific Lecture Notes in Complex Systems, 189-214. doi:10.1142/9789812771582_0008
Hamilton, I., Summerfield, A., Oreszczyn, T., & Ruyssevelt, P. (2017). Using epidemiological methods in energy and buildings research to achieve carbon emission targets. Energy and Buildings, 154, 188-197. doi:10.1016/j.enbuild.2017.08.079
Bardet, J.-P., & Little, R. (2014). Epidemiology of urban water distribution systems. Water Resources Research, 50(8), 6447-6465. doi:10.1002/2013wr015017
De Domenico, M., Granell, C., Porter, M. A., & Arenas, A. (2016). The physics of spreading processes in multilayer networks. Nature Physics, 12(10), 901-906. doi:10.1038/nphys3865
Hamilton, I. G., Summerfield, A. J., Lowe, R., Ruyssevelt, P., Elwell, C. A., & Oreszczyn, T. (2013). Energy epidemiology: a new approach to end-use energy demand research. Building Research & Information, 41(4), 482-497. doi:10.1080/09613218.2013.798142
Herrera, M., Ferreira, A. A., Coley, D. A., & de Aquino, R. R. B. (2016). SAX-quantile based multiresolution approach for finding heatwave events in summer temperature time series. AI Communications, 29(6), 725-732. doi:10.3233/aic-160716
Padulano, R., & Del Giudice, G. (2018). A Mixed Strategy Based on Self-Organizing Map for Water Demand Pattern Profiling of Large-Size Smart Water Grid Data. Water Resources Management, 32(11), 3671-3685. doi:10.1007/s11269-018-2012-7
Lin, J., Keogh, E., Wei, L., & Lonardi, S. (2007). Experiencing SAX: a novel symbolic representation of time series. Data Mining and Knowledge Discovery, 15(2), 107-144. doi:10.1007/s10618-007-0064-z
Aghabozorgi, S., & Wah, T. Y. (2014). Clustering of large time series datasets. Intelligent Data Analysis, 18(5), 793-817. doi:10.3233/ida-140669
Yuan, J., Wang, Z., Han, M., & Sun, Y. (2015). A lazy associative classifier for time series. Intelligent Data Analysis, 19(5), 983-1002. doi:10.3233/ida-150754
Rasheed, F., Alshalalfa, M., & Alhajj, R. (2011). Efficient Periodicity Mining in Time Series Databases Using Suffix Trees. IEEE Transactions on Knowledge and Data Engineering, 23(1), 79-94. doi:10.1109/tkde.2010.76
Schmieder, R., & Edwards, R. (2011). Fast Identification and Removal of Sequence Contamination from Genomic and Metagenomic Datasets. PLoS ONE, 6(3), e17288. doi:10.1371/journal.pone.0017288
Valimaki, N., Gerlach, W., Dixit, K., & Makinen, V. (2007). Compressed suffix tree a basis for genome-scale sequence analysis. Bioinformatics, 23(5), 629-630. doi:10.1093/bioinformatics/btl681
Ezkurdia, I., Juan, D., Rodriguez, J. M., Frankish, A., Diekhans, M., Harrow, J., … Tress, M. L. (2014). Multiple evidence strands suggest that there may be as few as 19 000 human protein-coding genes. Human Molecular Genetics, 23(22), 5866-5878. doi:10.1093/hmg/ddu309
Bermudez-Santana, C. I. (2016). APLICACIONES DE LA BIOINFORMÁTICA EN LA MEDICINA: EL GENOMA HUMANO. ¿CÓMO PODEMOS VER TANTO DETALLE? Acta Biológica Colombiana, 21(1Supl), 249-258. doi:10.15446/abc.v21n1supl.51233
Cai, L., Li, X., Ghosh, M., & Guo, B. (2009). Stability analysis of an HIV/AIDS epidemic model with treatment. Journal of Computational and Applied Mathematics, 229(1), 313-323. doi:10.1016/j.cam.2008.10.067
Jackson, M., & Chen-Charpentier, B. M. (2017). Modeling plant virus propagation with delays. Journal of Computational and Applied Mathematics, 309, 611-621. doi:10.1016/j.cam.2016.04.024
Brentan, B. M., Meirelles, G., Herrera, M., Luvizotto, E., & Izquierdo, J. (2017). Correlation Analysis of Water Demand and Predictive Variables for Short-Term Forecasting Models. Mathematical Problems in Engineering, 2017, 1-10. doi:10.1155/2017/6343625
Bhaskaran, K., Gasparrini, A., Hajat, S., Smeeth, L., & Armstrong, B. (2013). Time series regression studies in environmental epidemiology. International Journal of Epidemiology, 42(4), 1187-1195. doi:10.1093/ije/dyt092
HELFENSTEIN, U. (1991). The Use of Transfer Function Models, Intervention Analysis and Related Time Series Methods in Epidemiology. International Journal of Epidemiology, 20(3), 808-815. doi:10.1093/ije/20.3.808
Herrera, M., Abraham, E., & Stoianov, I. (2016). A Graph-Theoretic Framework for Assessing the Resilience of Sectorised Water Distribution Networks. Water Resources Management, 30(5), 1685-1699. doi:10.1007/s11269-016-1245-6
Jung, D., Choi, Y., & Kim, J. (2016). Optimal Node Grouping for Water Distribution System Demand Estimation. Water, 8(4), 160. doi:10.3390/w8040160
Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., & Keogh, E. (2012). Experimental comparison of representation methods and distance measures for time series data. Data Mining and Knowledge Discovery, 26(2), 275-309. doi:10.1007/s10618-012-0250-5
Cassisi, C., Prestifilippo, M., Cannata, A., Montalto, P., Patanè, D., & Privitera, E. (2016). Probabilistic Reasoning Over Seismic Time Series: Volcano Monitoring by Hidden Markov Models at Mt. Etna. Pure and Applied Geophysics, 173(7), 2365-2386. doi:10.1007/s00024-016-1284-1
McCreight, E. M. (1976). A Space-Economical Suffix Tree Construction Algorithm. Journal of the ACM, 23(2), 262-272. doi:10.1145/321941.321946
Aghabozorgi, S., Seyed Shirkhorshidi, A., & Ying Wah, T. (2015). Time-series clustering – A decade review. Information Systems, 53, 16-38. doi:10.1016/j.is.2015.04.007
Warren Liao, T. (2005). Clustering of time series data—a survey. Pattern Recognition, 38(11), 1857-1874. doi:10.1016/j.patcog.2005.01.025
[-]