- -

Inferring efficient operating rules in multireservoir water resource systems: A review

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Inferring efficient operating rules in multireservoir water resource systems: A review

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Macian-Sorribes, Hector es_ES
dc.contributor.author Pulido-Velazquez, M. es_ES
dc.date.accessioned 2020-04-08T05:58:43Z
dc.date.available 2020-04-08T05:58:43Z
dc.date.issued 2019-10-20 es_ES
dc.identifier.issn 2049-1948 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140500
dc.description.abstract [EN] Coordinated and efficient operation of water resource systems becomes essential to deal with growing demands and uncertain resources in water-stressed regions. System analysis models and tools help address the complexities of multireservoir systems when defining operating rules. This paper reviews the state of the art in developing operating rules for multireservoir water resource systems, focusing on efficient system operation. This review focuses on how optimal operating rules can be derived and represented. Advantages and drawbacks of each approach are discussed. Major approaches to derive optimal operating rules include direct optimization of reservoir operation, embedding conditional operating rules in simulation-optimization frameworks, and inferring rules from optimization results. Suggestions on which approach to use depend on context. Parametrization-simulation-optimization or rule inference using heuristics are promising approaches. Increased forecasting capabilities will further benefit the use of model predictive control algorithms to improve system operation. This article is categorized under: Engineering Water > Water, Health, and Sanitation Engineering Water > Methods es_ES
dc.description.sponsorship The study has been partially funded by the ADAPTAMED project (RTI2018-101483-B-I00) from the Ministerio de Ciencia, Innovacion Universidades (MICINN) of Spain, and by the postdoctoral program (PAID-10-18) of the Universitat Politecnica de Valencia (UPV). es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Wiley Interdisciplinary Reviews Water es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Optimization es_ES
dc.subject Reservoir operation es_ES
dc.subject Stochastic programming es_ES
dc.subject Water resources management es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Inferring efficient operating rules in multireservoir water resource systems: A review es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/wat2.1400 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-10-18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101483-B-I00/ES/PLANIFICACION, DISEÑO Y EVALUACION DE LA ADAPTACION DE CUENCAS MEDITERRANEAS A ESCENARIOS SOCIOECONOMICOS Y DE CAMBIO CLIMATICO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Macian-Sorribes, H.; Pulido-Velazquez, M. (2019). Inferring efficient operating rules in multireservoir water resource systems: A review. Wiley Interdisciplinary Reviews Water. 7(1):1-24. https://doi.org/10.1002/wat2.1400 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/wat2.1400 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 24 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\400735 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Aboutalebi, M., Bozorg Haddad, O., & Loáiciga, H. A. (2015). Optimal Monthly Reservoir Operation Rules for Hydropower Generation Derived with SVR-NSGAII. Journal of Water Resources Planning and Management, 141(11), 04015029. doi:10.1061/(asce)wr.1943-5452.0000553 es_ES
dc.description.references Ahmad, A., El-Shafie, A., Razali, S. F. M., & Mohamad, Z. S. (2014). Reservoir Optimization in Water Resources: a Review. Water Resources Management, 28(11), 3391-3405. doi:10.1007/s11269-014-0700-5 es_ES
dc.description.references Ahmadi, M., Bozorg Haddad, O., & Mariño, M. A. (2013). Extraction of Flexible Multi-Objective Real-Time Reservoir Operation Rules. Water Resources Management, 28(1), 131-147. doi:10.1007/s11269-013-0476-z es_ES
dc.description.references Andreu, J., Capilla, J., & Sanchís, E. (1996). AQUATOOL, a generalized decision-support system for water-resources planning and operational management. Journal of Hydrology, 177(3-4), 269-291. doi:10.1016/0022-1694(95)02963-x es_ES
dc.description.references Andreu, J., & Sahuquillo, A. (1987). Efficient Aquifer Simulation in Complex Systems. Journal of Water Resources Planning and Management, 113(1), 110-129. doi:10.1061/(asce)0733-9496(1987)113:1(110) es_ES
dc.description.references Ashbolt, S. C., Maheepala, S., & Perera, B. J. C. (2016). Using Multiobjective Optimization to Find Optimal Operating Rules for Short-Term Planning of Water Grids. Journal of Water Resources Planning and Management, 142(10), 04016033. doi:10.1061/(asce)wr.1943-5452.0000675 es_ES
dc.description.references Ashbolt, S. C., & Perera, B. J. C. (2018). Multiobjective Optimization of Seasonal Operating Rules for Water Grids Using Streamflow Forecast Information. Journal of Water Resources Planning and Management, 144(4), 05018003. doi:10.1061/(asce)wr.1943-5452.0000902 es_ES
dc.description.references Azari, A., Hamzeh, S., & Naderi, S. (2018). Multi-Objective Optimization of the Reservoir System Operation by Using the Hedging Policy. Water Resources Management, 32(6), 2061-2078. doi:10.1007/s11269-018-1917-5 es_ES
dc.description.references Becker, L., & Yeh, W. W.-G. (1974). Optimization of real time operation of a multiple-reservoir system. Water Resources Research, 10(6), 1107-1112. doi:10.1029/wr010i006p01107 es_ES
dc.description.references Bellman, R. E., & Dreyfus, S. E. (1962). Applied Dynamic Programming. doi:10.1515/9781400874651 es_ES
dc.description.references Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust Optimization. doi:10.1515/9781400831050 es_ES
dc.description.references Bessler, F. T., Savic, D. A., & Walters, G. A. (2003). Water Reservoir Control with Data Mining. Journal of Water Resources Planning and Management, 129(1), 26-34. doi:10.1061/(asce)0733-9496(2003)129:1(26) es_ES
dc.description.references Bhaskar, N. R., & Whitlatch, E. E. (1980). Derivation of monthly reservoir release policies. Water Resources Research, 16(6), 987-993. doi:10.1029/wr016i006p00987 es_ES
dc.description.references Bianucci, P., Sordo-Ward, Á., Moralo, J., & Garrote, L. (2015). Probabilistic-Multiobjective Comparison of User-Defined Operating Rules. Case Study: Hydropower Dam in Spain. Water, 7(12), 956-974. doi:10.3390/w7030956 es_ES
dc.description.references Biglarbeigi, P., Giuliani, M., & Castelletti, A. (2018). Partitioning the Impacts of Streamflow and Evaporation Uncertainty on the Operations of Multipurpose Reservoirs in Arid Regions. Journal of Water Resources Planning and Management, 144(7), 05018008. doi:10.1061/(asce)wr.1943-5452.0000945 es_ES
dc.description.references Bolouri-Yazdeli, Y., Bozorg Haddad, O., Fallah-Mehdipour, E., & Mariño, M. A. (2014). Evaluation of Real-Time Operation Rules in Reservoir Systems Operation. Water Resources Management, 28(3), 715-729. doi:10.1007/s11269-013-0510-1 es_ES
dc.description.references Borgomeo, E., Mortazavi-Naeini, M., Hall, J. W., O’Sullivan, M. J., & Watson, T. (2016). Trading-off tolerable risk with climate change adaptation costs in water supply systems. Water Resources Research, 52(2), 622-643. doi:10.1002/2015wr018164 es_ES
dc.description.references Bozorg-Haddad, O., Azarnivand, A., Hosseini-Moghari, S.-M., & Loáiciga, H. A. (2017). WASPAS Application and Evolutionary Algorithm Benchmarking in Optimal Reservoir Optimization Problems. Journal of Water Resources Planning and Management, 143(1), 04016070. doi:10.1061/(asce)wr.1943-5452.0000716 es_ES
dc.description.references Bozorg-Haddad, O., Karimirad, I., Seifollahi-Aghmiuni, S., & Loáiciga, H. A. (2015). Development and Application of the Bat Algorithm for Optimizing the Operation of Reservoir Systems. Journal of Water Resources Planning and Management, 141(8), 04014097. doi:10.1061/(asce)wr.1943-5452.0000498 es_ES
dc.description.references Breiman, L. (2001). Machine Learning, 45(1), 5-32. doi:10.1023/a:1010933404324 es_ES
dc.description.references Brown, C., Ghile, Y., Laverty, M., & Li, K. (2012). Decision scaling: Linking bottom-up vulnerability analysis with climate projections in the water sector. Water Resources Research, 48(9). doi:10.1029/2011wr011212 es_ES
dc.description.references Brown, C. M., Lund, J. R., Cai, X., Reed, P. M., Zagona, E. A., Ostfeld, A., … Brekke, L. (2015). The future of water resources systems analysis: Toward a scientific framework for sustainable water management. Water Resources Research, 51(8), 6110-6124. doi:10.1002/2015wr017114 es_ES
dc.description.references Cai, X., McKinney, D. C., & Lasdon, L. S. (2001). Piece-by-Piece Approach to Solving Large Nonlinear Water Resources Management Models. Journal of Water Resources Planning and Management, 127(6), 363-368. doi:10.1061/(asce)0733-9496(2001)127:6(363) es_ES
dc.description.references Cai, X., Vogel, R., & Ranjithan, R. (2013). Special Issue on the Role of Systems Analysis in Watershed Management. Journal of Water Resources Planning and Management, 139(5), 461-463. doi:10.1061/(asce)wr.1943-5452.0000341 es_ES
dc.description.references Cancelliere, A., Giuliano, G., Ancarani, A., & Rossi, G. (2002). Water Resources Management, 16(1), 71-88. doi:10.1023/a:1015563820136 es_ES
dc.description.references Caseri, A., Javelle, P., Ramos, M. H., & Leblois, E. (2015). Generating precipitation ensembles for flood alert and risk management. Journal of Flood Risk Management, 9(4), 402-415. doi:10.1111/jfr3.12203 es_ES
dc.description.references Castelletti, A., Galelli, S., Restelli, M., & Soncini-Sessa, R. (2010). Tree-based reinforcement learning for optimal water reservoir operation. Water Resources Research, 46(9). doi:10.1029/2009wr008898 es_ES
dc.description.references Castelletti, A., Pianosi, F., & Restelli, M. (2013). A multiobjective reinforcement learning approach to water resources systems operation: Pareto frontier approximation in a single run. Water Resources Research, 49(6), 3476-3486. doi:10.1002/wrcr.20295 es_ES
dc.description.references Castelletti, A., Pianosi, F., & Soncini-Sessa, R. (2008). Water reservoir control under economic, social and environmental constraints. Automatica, 44(6), 1595-1607. doi:10.1016/j.automatica.2008.03.003 es_ES
dc.description.references Castelletti, A., & Soncini-Sessa, R. (2007). Bayesian networks in water resource modelling and management. Environmental Modelling & Software, 22(8), 1073-1074. doi:10.1016/j.envsoft.2006.06.001 es_ES
dc.description.references Castelletti, A., & Soncini-Sessa, R. (2007). Bayesian Networks and participatory modelling in water resource management. Environmental Modelling & Software, 22(8), 1075-1088. doi:10.1016/j.envsoft.2006.06.003 es_ES
dc.description.references Celeste, A. B., & Billib, M. (2009). Evaluation of stochastic reservoir operation optimization models. Advances in Water Resources, 32(9), 1429-1443. doi:10.1016/j.advwatres.2009.06.008 es_ES
dc.description.references Celeste, A. B., Curi, W. F., & Curi, R. C. (2009). Implicit Stochastic Optimization for deriving reservoir operating rules in semiarid Brazil. Pesquisa Operacional, 29(1), 223-234. doi:10.1590/s0101-74382009000100011 es_ES
dc.description.references Chandramouli, V., & Raman, H. (2001). Multireservoir Modeling with Dynamic Programming and Neural Networks. Journal of Water Resources Planning and Management, 127(2), 89-98. doi:10.1061/(asce)0733-9496(2001)127:2(89) es_ES
dc.description.references Chang, L.-C., & Chang, F.-J. (2001). Intelligent control for modelling of real-time reservoir operation. Hydrological Processes, 15(9), 1621-1634. doi:10.1002/hyp.226 es_ES
dc.description.references Chazarra, M., García-González, J., Pérez-Díaz, J. I., & Arteseros, M. (2016). Stochastic optimization model for the weekly scheduling of a hydropower system in day-ahead and secondary regulation reserve markets. Electric Power Systems Research, 130, 67-77. doi:10.1016/j.epsr.2015.08.014 es_ES
dc.description.references Chen, D., Leon, A. S., Fuentes, C., Gibson, N. L., & Qin, H. (2018). Incorporating Filters in Random Search Algorithms for the Hourly Operation of a Multireservoir System. Journal of Water Resources Planning and Management, 144(2), 04017088. doi:10.1061/(asce)wr.1943-5452.0000876 es_ES
dc.description.references Coerver, H. M., Rutten, M. M., & van de Giesen, N. C. (2018). Deduction of reservoir operating rules for application in global hydrological models. Hydrology and Earth System Sciences, 22(1), 831-851. doi:10.5194/hess-22-831-2018 es_ES
dc.description.references Côté, P., & Leconte, R. (2016). Comparison of Stochastic Optimization Algorithms for Hydropower Reservoir Operation with Ensemble Streamflow Prediction. Journal of Water Resources Planning and Management, 142(2), 04015046. doi:10.1061/(asce)wr.1943-5452.0000575 es_ES
dc.description.references Cui, L., & Kuczera, G. (2005). Optimizing water supply headworks operating rules under stochastic inputs: Assessment of genetic algorithm performance. Water Resources Research, 41(5). doi:10.1029/2004wr003517 es_ES
dc.description.references Culley, S., Noble, S., Yates, A., Timbs, M., Westra, S., Maier, H. R., … Castelletti, A. (2016). A bottom-up approach to identifying the maximum operational adaptive capacity of water resource systems to a changing climate. Water Resources Research, 52(9), 6751-6768. doi:10.1002/2015wr018253 es_ES
dc.description.references Cunha, M. C., & Antunes, A. (2012). Simulated annealing algorithms for water systems optimization. WIT Transactions on State of the Art in Science and Engineering, 57-73. doi:10.2495/978-1-84564-664-6/04 es_ES
dc.description.references Dariane, A. B., & Momtahen, S. (2009). Optimization of Multireservoir Systems Operation Using Modified Direct Search Genetic Algorithm. Journal of Water Resources Planning and Management, 135(3), 141-148. doi:10.1061/(asce)0733-9496(2009)135:3(141) es_ES
dc.description.references Das, B., Singh, A., Panda, S. N., & Yasuda, H. (2015). Optimal land and water resources allocation policies for sustainable irrigated agriculture. Land Use Policy, 42, 527-537. doi:10.1016/j.landusepol.2014.09.012 es_ES
dc.description.references Davidsen, C., Liu, S., Mo, X., Rosbjerg, D., & Bauer-Gottwein, P. (2016). The cost of ending groundwater overdraft on the North China Plain. Hydrology and Earth System Sciences, 20(2), 771-785. doi:10.5194/hess-20-771-2016 es_ES
dc.description.references Ehteram, M., Karami, H., & Farzin, S. (2018). Reservoir Optimization for Energy Production Using a New Evolutionary Algorithm Based on Multi-Criteria Decision-Making Models. Water Resources Management, 32(7), 2539-2560. doi:10.1007/s11269-018-1945-1 es_ES
dc.description.references Eisel, L. M. (1972). Chance constrained reservoir model. Water Resources Research, 8(2), 339-347. doi:10.1029/wr008i002p00339 es_ES
dc.description.references European Commission(2007). Communication from the Commission to the European Parliament and the Council: Addressing the challenge of water scarcity and droughts in the European Union COM(2007) 414 final. Brussels Belgium. es_ES
dc.description.references European Commission. (2012a). Communication from the Commission to the European Parliament the Council the European Economic and Social Committee and the Committee of the Regions: A Blueprint to Safeguard Europe's Water Resources COM(2012) 673 final. Brussels Belgium. es_ES
dc.description.references European Commission. (2012b). Communication from the Commission to the European Parliament the Council the European Economic and Social Committee and the Committee of the Regions: Report on the Review of the European Water Scarcity and Droughts Policy COM(2012) 672 final. Brussels Belgium. es_ES
dc.description.references Fallah-Mehdipour, E., Bozorg Haddad, O., & Mariño, M. A. (2012). Real-Time Operation of Reservoir System by Genetic Programming. Water Resources Management, 26(14), 4091-4103. doi:10.1007/s11269-012-0132-z es_ES
dc.description.references Fazlali, A., & Shourian, M. (2017). A Demand Management Based Crop and Irrigation Planning Using the Simulation-Optimization Approach. Water Resources Management, 32(1), 67-81. doi:10.1007/s11269-017-1791-6 es_ES
dc.description.references Ficchì, A., Raso, L., Dorchies, D., Pianosi, F., Malaterre, P.-O., Van Overloop, P.-J., & Jay-Allemand, M. (2016). Optimal Operation of the Multireservoir System in the Seine River Basin Using Deterministic and Ensemble Forecasts. Journal of Water Resources Planning and Management, 142(1), 05015005. doi:10.1061/(asce)wr.1943-5452.0000571 es_ES
dc.description.references Fu, Q., Li, T., Cui, S., Liu, D., & Lu, X. (2017). Agricultural Multi-Water Source Allocation Model Based on Interval Two-Stage Stochastic Robust Programming under Uncertainty. Water Resources Management, 32(4), 1261-1274. doi:10.1007/s11269-017-1868-2 es_ES
dc.description.references Galelli, S., Goedbloed, A., Schwanenberg, D., & van Overloop, P.-J. (2014). Optimal Real-Time Operation of Multipurpose Urban Reservoirs: Case Study in Singapore. Journal of Water Resources Planning and Management, 140(4), 511-523. doi:10.1061/(asce)wr.1943-5452.0000342 es_ES
dc.description.references Giuliani, M., Castelletti, A., Pianosi, F., Mason, E., & Reed, P. M. (2016). Curses, Tradeoffs, and Scalable Management: Advancing Evolutionary Multiobjective Direct Policy Search to Improve Water Reservoir Operations. Journal of Water Resources Planning and Management, 142(2), 04015050. doi:10.1061/(asce)wr.1943-5452.0000570 es_ES
dc.description.references Giuliani, M., Herman, J. D., Castelletti, A., & Reed, P. (2014). Many-objective reservoir policy identification and refinement to reduce policy inertia and myopia in water management. Water Resources Research, 50(4), 3355-3377. doi:10.1002/2013wr014700 es_ES
dc.description.references Giuliani, M., Li, Y., Castelletti, A., & Gandolfi, C. (2016). A coupled human-natural systems analysis of irrigated agriculture under changing climate. Water Resources Research, 52(9), 6928-6947. doi:10.1002/2016wr019363 es_ES
dc.description.references Giuliani, M., Quinn, J. D., Herman, J. D., Castelletti, A., & Reed, P. M. (2018). Scalable Multiobjective Control for Large-Scale Water Resources Systems Under Uncertainty. IEEE Transactions on Control Systems Technology, 26(4), 1492-1499. doi:10.1109/tcst.2017.2705162 es_ES
dc.description.references Grüne, L., & Semmler, W. (2004). Using dynamic programming with adaptive grid scheme for optimal control problems in economics. Journal of Economic Dynamics and Control, 28(12), 2427-2456. doi:10.1016/j.jedc.2003.11.002 es_ES
dc.description.references Guariso, G., Rinaldi, S., & Soncini-Sessa, R. (1986). The Management of Lake Como: A Multiobjective Analysis. Water Resources Research, 22(2), 109-120. doi:10.1029/wr022i002p00109 es_ES
dc.description.references Gundelach, J., & ReVelle, C. (1975). Linear decision rule in reservoir management and design: 5. A general algorithm. Water Resources Research, 11(2), 204-207. doi:10.1029/wr011i002p00204 es_ES
dc.description.references Guo, X., Hu, T., Zeng, X., & Li, X. (2013). Extension of Parametric Rule with the Hedging Rule for Managing Multireservoir System during Droughts. Journal of Water Resources Planning and Management, 139(2), 139-148. doi:10.1061/(asce)wr.1943-5452.0000241 es_ES
dc.description.references Haddad, O. B., Afshar, A., & Mariño, M. A. (2006). Honey-Bees Mating Optimization (HBMO) Algorithm: A New Heuristic Approach for Water Resources Optimization. Water Resources Management, 20(5), 661-680. doi:10.1007/s11269-005-9001-3 es_ES
dc.description.references Hadka, D., Herman, J., Reed, P., & Keller, K. (2015). An open source framework for many-objective robust decision making. Environmental Modelling & Software, 74, 114-129. doi:10.1016/j.envsoft.2015.07.014 es_ES
dc.description.references Haguma, D., & Leconte, R. (2018). Long-Term Planning of Water Systems in the Context of Climate Non-Stationarity with Deterministic and Stochastic Optimization. Water Resources Management, 32(5), 1725-1739. doi:10.1007/s11269-017-1900-6 es_ES
dc.description.references Haguma, D., Leconte, R., & Côté, P. (2018). Evaluating Transition Probabilities for a Stochastic Dynamic Programming Model Used in Water System Optimization. Journal of Water Resources Planning and Management, 144(2), 04017090. doi:10.1061/(asce)wr.1943-5452.0000883 es_ES
dc.description.references Houck, M. H. (1979). A Chance Constrained Optimization Model for reservoir design and operation. Water Resources Research, 15(5), 1011-1016. doi:10.1029/wr015i005p01011 es_ES
dc.description.references Ji, C., Zhou, T., & Huang, H. (2014). Operating Rules Derivation of Jinsha Reservoirs System with Parameter Calibrated Support Vector Regression. Water Resources Management, 28(9), 2435-2451. doi:10.1007/s11269-014-0610-6 es_ES
dc.description.references Karamouz, M., & Houck, M. H. (1982). Annual and monthly reservoir operating rules generated by deterministic optimization. Water Resources Research, 18(5), 1337-1344. doi:10.1029/wr018i005p01337 es_ES
dc.description.references Karamouz, M., & Houck, M. H. (1987). COMPARISON OF STOCHASTIC AND DETERMINISTIC DYNAMIC PROGRAMMING FOR RESERVOIR OPERATING RULE GENERATION. Journal of the American Water Resources Association, 23(1), 1-9. doi:10.1111/j.1752-1688.1987.tb00778.x es_ES
dc.description.references Karamouz, M., & Vasiliadis, H. V. (1992). Bayesian stochastic optimization of reservoir operation using uncertain forecasts. Water Resources Research, 28(5), 1221-1232. doi:10.1029/92wr00103 es_ES
dc.description.references Kasprzyk, J. R., Nataraj, S., Reed, P. M., & Lempert, R. J. (2013). Many objective robust decision making for complex environmental systems undergoing change. Environmental Modelling & Software, 42, 55-71. doi:10.1016/j.envsoft.2012.12.007 es_ES
dc.description.references Kelman, J., Stedinger, J. R., Cooper, L. A., Hsu, E., & Yuan, S.-Q. (1990). Sampling stochastic dynamic programming applied to reservoir operation. Water Resources Research, 26(3), 447-454. doi:10.1029/wr026i003p00447 es_ES
dc.description.references Keshtkar, A. R., Salajegheh, A., Sadoddin, A., & Allan, M. G. (2013). Application of Bayesian networks for sustainability assessment in catchment modeling and management (Case study: The Hablehrood river catchment). Ecological Modelling, 268, 48-54. doi:10.1016/j.ecolmodel.2013.08.003 es_ES
dc.description.references Kim, T., Heo, J.-H., Bae, D.-H., & Kim, J.-H. (2008). Single-reservoir operating rules for a year using multiobjective genetic algorithm. Journal of Hydroinformatics, 10(2), 163-179. doi:10.2166/hydro.2008.019 es_ES
dc.description.references Koutsoyiannis, D., & Economou, A. (2003). Evaluation of the parameterization-simulation-optimization approach for the control of reservoir systems. Water Resources Research, 39(6). doi:10.1029/2003wr002148 es_ES
dc.description.references Kumar, D. N., & Reddy, M. J. (2006). Ant Colony Optimization for Multi-Purpose Reservoir Operation. Water Resources Management, 20(6), 879-898. doi:10.1007/s11269-005-9012-0 es_ES
dc.description.references Nagesh Kumar, D., & Janga Reddy, M. (2007). Multipurpose Reservoir Operation Using Particle Swarm Optimization. Journal of Water Resources Planning and Management, 133(3), 192-201. doi:10.1061/(asce)0733-9496(2007)133:3(192) es_ES
dc.description.references Kumar, K., & Kasthurirengan, S. (2018). Generalized Linear Two-Point Hedging Rule for Water Supply Reservoir Operation. Journal of Water Resources Planning and Management, 144(9), 04018051. doi:10.1061/(asce)wr.1943-5452.0000964 es_ES
dc.description.references Kwakkel, J. H., Haasnoot, M., & Walker, W. E. (2016). Comparing Robust Decision-Making and Dynamic Adaptive Policy Pathways for model-based decision support under deep uncertainty. Environmental Modelling & Software, 86, 168-183. doi:10.1016/j.envsoft.2016.09.017 es_ES
dc.description.references Labadie, J. W. (2004). Optimal Operation of Multireservoir Systems: State-of-the-Art Review. Journal of Water Resources Planning and Management, 130(2), 93-111. doi:10.1061/(asce)0733-9496(2004)130:2(93) es_ES
dc.description.references Labadie J. W. Baldo M. &Larson R.(2000).MODSIM: Decision support system for river basin management. Documentation and user manual. es_ES
dc.description.references Lee, J.-H., & Labadie, J. W. (2007). Stochastic optimization of multireservoir systems via reinforcement learning. Water Resources Research, 43(11). doi:10.1029/2006wr005627 es_ES
dc.description.references Lei, X., Tan, Q., Wang, X., Wang, H., Wen, X., Wang, C., & Zhang, J. (2018). Stochastic optimal operation of reservoirs based on copula functions. Journal of Hydrology, 557, 265-275. doi:10.1016/j.jhydrol.2017.12.038 es_ES
dc.description.references Lerma, N., Paredes-Arquiola, J., Andreu, J., & Solera, A. (2013). Development of operating rules for a complex multi-reservoir system by coupling genetic algorithms and network optimization. Hydrological Sciences Journal, 58(4), 797-812. doi:10.1080/02626667.2013.779777 es_ES
dc.description.references Lerma, N., Paredes-Arquiola, J., Andreu, J., Solera, A., & Sechi, G. M. (2015). Assessment of evolutionary algorithms for optimal operating rules design in real Water Resource Systems. Environmental Modelling & Software, 69, 425-436. doi:10.1016/j.envsoft.2014.09.024 es_ES
dc.description.references Li, Y., Giuliani, M., & Castelletti, A. (2017). A coupled human–natural system to assess the operational value of weather and climate services for agriculture. Hydrology and Earth System Sciences, 21(9), 4693-4709. doi:10.5194/hess-21-4693-2017 es_ES
dc.description.references Lin, N. M., & Rutten, M. (2016). Optimal Operation of a Network of Multi-purpose Reservoir: A Review. Procedia Engineering, 154, 1376-1384. doi:10.1016/j.proeng.2016.07.504 es_ES
dc.description.references Liu, P., Cai, X., & Guo, S. (2011). Deriving multiple near-optimal solutions to deterministic reservoir operation problems. Water Resources Research, 47(8). doi:10.1029/2011wr010998 es_ES
dc.description.references Loucks, D. P. (1970). Some Comments on Linear Decision Rules and Chance Constraints. Water Resources Research, 6(2), 668-671. doi:10.1029/wr006i002p00668 es_ES
dc.description.references Loucks, D. P. (2017). Managing Water as a Critical Component of a Changing World. Water Resources Management, 31(10), 2905-2916. doi:10.1007/s11269-017-1705-7 es_ES
dc.description.references Lund J. R.(1996).Developing seasonal and long‐term reservoir system operation plans using HEC‐PRM Davis CA. es_ES
dc.description.references Lund, J. R., & Ferreira, I. (1996). Operating Rule Optimization for Missouri River Reservoir System. Journal of Water Resources Planning and Management, 122(4), 287-295. doi:10.1061/(asce)0733-9496(1996)122:4(287) es_ES
dc.description.references Lund, J. R., & Guzman, J. (1999). Derived Operating Rules for Reservoirs in Series or in Parallel. Journal of Water Resources Planning and Management, 125(3), 143-153. doi:10.1061/(asce)0733-9496(1999)125:3(143) es_ES
dc.description.references Luo, B., Maqsood, I., & Huang, G. H. (2006). Planning water resources systems with interval stochastic dynamic programming. Water Resources Management, 21(6), 997-1014. doi:10.1007/s11269-006-9069-4 es_ES
dc.description.references Macian‐Sorribes H.(2017).Design of optimal reservoir operating rules in large water resources systems combining stochastic programming fuzzy logic and expert criteria. Universitat Politècnica de València.https://doi.org/10.4995/THESIS/10251/82554. es_ES
dc.description.references Macian-Sorribes, H., Tilmant, A., & Pulido-Velazquez, M. (2017). Improving operating policies of large-scale surface-groundwater systems through stochastic programming. Water Resources Research, 53(2), 1407-1423. doi:10.1002/2016wr019573 es_ES
dc.description.references Maier, H. R., Guillaume, J. H. A., van Delden, H., Riddell, G. A., Haasnoot, M., & Kwakkel, J. H. (2016). An uncertain future, deep uncertainty, scenarios, robustness and adaptation: How do they fit together? Environmental Modelling & Software, 81, 154-164. doi:10.1016/j.envsoft.2016.03.014 es_ES
dc.description.references Maier, H. R., Kapelan, Z., Kasprzyk, J., Kollat, J., Matott, L. S., Cunha, M. C., … Reed, P. M. (2014). Evolutionary algorithms and other metaheuristics in water resources: Current status, research challenges and future directions. Environmental Modelling & Software, 62, 271-299. doi:10.1016/j.envsoft.2014.09.013 es_ES
dc.description.references Malekmohammadi, B., Kerachian, R., & Zahraie, B. (2009). Developing monthly operating rules for a cascade system of reservoirs: Application of Bayesian Networks. Environmental Modelling & Software, 24(12), 1420-1432. doi:10.1016/j.envsoft.2009.06.008 es_ES
dc.description.references Mamdani, E. H. (1974). Application of fuzzy algorithms for control of simple dynamic plant. Proceedings of the Institution of Electrical Engineers, 121(12), 1585. doi:10.1049/piee.1974.0328 es_ES
dc.description.references Mousavi, S. J., Ponnambalam, K., & Karray, F. (2007). Inferring operating rules for reservoir operations using fuzzy regression and ANFIS. Fuzzy Sets and Systems, 158(10), 1064-1082. doi:10.1016/j.fss.2006.10.024 es_ES
dc.description.references Mujumdar, P. P., & Nirmala, B. (2006). A Bayesian Stochastic Optimization Model for a Multi-Reservoir Hydropower System. Water Resources Management, 21(9), 1465-1485. doi:10.1007/s11269-006-9094-3 es_ES
dc.description.references Nalbantis, I., & Koutsoyiannis, D. (1997). A parametric rule for planning and management of multiple-reservoir systems. Water Resources Research, 33(9), 2165-2177. doi:10.1029/97wr01034 es_ES
dc.description.references Nguyen, L., & Novák, V. (2019). Forecasting seasonal time series based on fuzzy techniques. Fuzzy Sets and Systems, 361, 114-129. doi:10.1016/j.fss.2018.09.010 es_ES
dc.description.references Ostadrahimi, L., Mariño, M. A., & Afshar, A. (2011). Multi-reservoir Operation Rules: Multi-swarm PSO-based Optimization Approach. Water Resources Management, 26(2), 407-427. doi:10.1007/s11269-011-9924-9 es_ES
dc.description.references Panigrahi, D. P., & Mujumdar, P. P. (2000). Water Resources Management, 14(2), 89-109. doi:10.1023/a:1008170632582 es_ES
dc.description.references Pereira, M. V. F., & Pinto, L. M. V. G. (1985). Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach. Water Resources Research, 21(6), 779-792. doi:10.1029/wr021i006p00779 es_ES
dc.description.references Pereira, M. V. F., & Pinto, L. M. V. G. (1991). Multi-stage stochastic optimization applied to energy planning. Mathematical Programming, 52(1-3), 359-375. doi:10.1007/bf01582895 es_ES
dc.description.references Pereira-Cardenal, S. J., Mo, B., Riegels, N. D., Arnbjerg-Nielsen, K., & Bauer-Gottwein, P. (2015). Optimization of Multipurpose Reservoir Systems Using Power Market Models. Journal of Water Resources Planning and Management, 141(8), 04014100. doi:10.1061/(asce)wr.1943-5452.0000500 es_ES
dc.description.references Philbrick, C. R., & Kitanidis, P. K. (1999). Limitations of Deterministic Optimization Applied to Reservoir Operations. Journal of Water Resources Planning and Management, 125(3), 135-142. doi:10.1061/(asce)0733-9496(1999)125:3(135) es_ES
dc.description.references Pianosi, F., & Ravazzani, G. (2010). Assessing rainfall-runoff models for the management of Lake Verbano. Hydrological Processes, 24(22), 3195-3205. doi:10.1002/hyp.7745 es_ES
dc.description.references Pianosi, F., & Soncini-Sessa, R. (2009). Real-time management of a multipurpose water reservoir with a heteroscedastic inflow model. Water Resources Research, 45(10). doi:10.1029/2008wr007335 es_ES
dc.description.references Pulido-Velazquez, M., Andreu, J., Sahuquillo, A., & Pulido-Velazquez, D. (2008). Hydro-economic river basin modelling: The application of a holistic surface–groundwater model to assess opportunity costs of water use in Spain. Ecological Economics, 66(1), 51-65. doi:10.1016/j.ecolecon.2007.12.016 es_ES
dc.description.references Pulido-Velazquez, M., Jenkins, M. W., & Lund, J. R. (2004). Economic values for conjunctive use and water banking in southern California. Water Resources Research, 40(3). doi:10.1029/2003wr002626 es_ES
dc.description.references Qin, T., & Boccelli, D. L. (2019). Estimating Distribution System Water Demands Using Markov Chain Monte Carlo. Journal of Water Resources Planning and Management, 145(7), 04019023. doi:10.1061/(asce)wr.1943-5452.0001077 es_ES
dc.description.references Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81-106. doi:10.1007/bf00116251 es_ES
dc.description.references Reed, P. M., Hadka, D., Herman, J. D., Kasprzyk, J. R., & Kollat, J. B. (2013). Evolutionary multiobjective optimization in water resources: The past, present, and future. Advances in Water Resources, 51, 438-456. doi:10.1016/j.advwatres.2012.01.005 es_ES
dc.description.references ReVelle, C., & Gundelach, J. (1975). Linear decision rule in reservoir management and design: 4. A rule that minimizes output variance. Water Resources Research, 11(2), 197-203. doi:10.1029/wr011i002p00197 es_ES
dc.description.references Revelle, C., Joeres, E., & Kirby, W. (1969). The Linear Decision Rule in Reservoir Management and Design: 1, Development of the Stochastic Model. Water Resources Research, 5(4), 767-777. doi:10.1029/wr005i004p00767 es_ES
dc.description.references Roach, T., Kapelan, Z., Ledbetter, R., & Ledbetter, M. (2016). Comparison of Robust Optimization and Info-Gap Methods for Water Resource Management under Deep Uncertainty. Journal of Water Resources Planning and Management, 142(9), 04016028. doi:10.1061/(asce)wr.1943-5452.0000660 es_ES
dc.description.references Rogers, P. P., & Fiering, M. B. (1986). Use of systems analysis in water management. Water Resources Research, 22(9S), 146S-158S. doi:10.1029/wr022i09sp0146s es_ES
dc.description.references Ropero, R. F., Flores, M. J., Rumí, R., & Aguilera, P. A. (2016). Applications of hybrid dynamic Bayesian networks to water reservoir management. Environmetrics, 28(1), e2432. doi:10.1002/env.2432 es_ES
dc.description.references Rougé, C., & Tilmant, A. (2016). Using stochastic dual dynamic programming in problems with multiple near-optimal solutions. Water Resources Research, 52(5), 4151-4163. doi:10.1002/2016wr018608 es_ES
dc.description.references Russell, S. O., & Campbell, P. F. (1996). Reservoir Operating Rules with Fuzzy Programming. Journal of Water Resources Planning and Management, 122(3), 165-170. doi:10.1061/(asce)0733-9496(1996)122:3(165) es_ES
dc.description.references Safavi, H. R., & Enteshari, S. (2016). Conjunctive use of surface and ground water resources using the ant system optimization. Agricultural Water Management, 173, 23-34. doi:10.1016/j.agwat.2016.05.001 es_ES
dc.description.references Sahinidis, N. V. (2004). Optimization under uncertainty: state-of-the-art and opportunities. Computers & Chemical Engineering, 28(6-7), 971-983. doi:10.1016/j.compchemeng.2003.09.017 es_ES
dc.description.references Zatarain Salazar, J., Reed, P. M., Herman, J. D., Giuliani, M., & Castelletti, A. (2016). A diagnostic assessment of evolutionary algorithms for multi-objective surface water reservoir control. Advances in Water Resources, 92, 172-185. doi:10.1016/j.advwatres.2016.04.006 es_ES
dc.description.references Satti, S., Zaitchik, B., & Siddiqui, S. (2015). The question of Sudan: a hydro-economic optimization model for the Sudanese Blue Nile. Hydrology and Earth System Sciences, 19(5), 2275-2293. doi:10.5194/hess-19-2275-2015 es_ES
dc.description.references kumar, A. R. S., Goyal, M. K., Ojha, C. S. P., Singh, R. D., Swamee, P. K., & Nema, R. K. (2012). Application of ANN, Fuzzy Logic and Decision Tree Algorithms for the Development of Reservoir Operating Rules. Water Resources Management, 27(3), 911-925. doi:10.1007/s11269-012-0225-8 es_ES
dc.description.references Sheibani, H., Alizadeh, H., & Shourian, M. (2018). Optimum Design and Operation of a Reservoir and Irrigation Network Considering Uncertainty of Hydrologic, Agronomic and Economic Factors. Water Resources Management, 33(2), 863-879. doi:10.1007/s11269-018-2148-5 es_ES
dc.description.references Sherafatpour, Z., Roozbahani, A., & Hasani, Y. (2019). Agricultural Water Allocation by Integration of Hydro-Economic Modeling with Bayesian Networks and Random Forest Approaches. Water Resources Management, 33(7), 2277-2299. doi:10.1007/s11269-019-02240-9 es_ES
dc.description.references Shourian, M., Mousavi, S. J., & Tahershamsi, A. (2007). Basin-wide Water Resources Planning by Integrating PSO Algorithm and MODSIM. Water Resources Management, 22(10), 1347-1366. doi:10.1007/s11269-007-9229-1 es_ES
dc.description.references Shrestha, B. P., Duckstein, L., & Stakhiv, E. Z. (1996). Fuzzy Rule-Based Modeling of Reservoir Operation. Journal of Water Resources Planning and Management, 122(4), 262-269. doi:10.1061/(asce)0733-9496(1996)122:4(262) es_ES
dc.description.references Simonovic, S. P. (1992). Reservoir Systems Analysis: Closing Gap between Theory and Practice. Journal of Water Resources Planning and Management, 118(3), 262-280. doi:10.1061/(asce)0733-9496(1992)118:3(262) es_ES
dc.description.references Singh, A. (2012). An overview of the optimization modelling applications. Journal of Hydrology, 466-467, 167-182. doi:10.1016/j.jhydrol.2012.08.004 es_ES
dc.description.references Soleimani, S., Bozorg-Haddad, O., & Loáiciga, H. A. (2016). Reservoir Operation Rules with Uncertainties in Reservoir Inflow and Agricultural Demand Derived with Stochastic Dynamic Programming. Journal of Irrigation and Drainage Engineering, 142(11), 04016046. doi:10.1061/(asce)ir.1943-4774.0001065 es_ES
dc.description.references Soleimani, S., Bozorg-Haddad, O., Saadatpour, M., & Loáiciga, H. A. (2016). Optimal Selective Withdrawal Rules Using a Coupled Data Mining Model and Genetic Algorithm. Journal of Water Resources Planning and Management, 142(12), 04016064. doi:10.1061/(asce)wr.1943-5452.0000717 es_ES
dc.description.references Sordo-Ward, A., Garrote, L., Martín-Carrasco, F., & Dolores Bejarano, M. (2012). Extreme flood abatement in large dams with fixed-crest spillways. Journal of Hydrology, 466-467, 60-72. doi:10.1016/j.jhydrol.2012.08.009 es_ES
dc.description.references Spiliotis, M., Mediero, L., & Garrote, L. (2016). Optimization of Hedging Rules for Reservoir Operation During Droughts Based on Particle Swarm Optimization. Water Resources Management, 30(15), 5759-5778. doi:10.1007/s11269-016-1285-y es_ES
dc.description.references Sreekanth, J., Datta, B., & Mohapatra, P. K. (2012). Optimal Short-term Reservoir Operation with Integrated Long-term Goals. Water Resources Management, 26(10), 2833-2850. doi:10.1007/s11269-012-0051-z es_ES
dc.description.references Srinivasan, K., & Kumar, K. (2018). Multi-Objective Simulation-Optimization Model for Long-term Reservoir Operation using Piecewise Linear Hedging Rule. Water Resources Management, 32(5), 1901-1911. doi:10.1007/s11269-018-1911-y es_ES
dc.description.references Stedinger, J. R., Sule, B. F., & Loucks, D. P. (1984). Stochastic dynamic programming models for reservoir operation optimization. Water Resources Research, 20(11), 1499-1505. doi:10.1029/wr020i011p01499 es_ES
dc.description.references Sun, X., Ma, C., & Lian, J. (2018). Optimal Operation of Danjiangkou Reservoir Using Improved Hedging Model and Considering the Effects of Historical Decisions. Journal of Water Resources Planning and Management, 144(1), 04017080. doi:10.1061/(asce)wr.1943-5452.0000868 es_ES
dc.description.references Tan, Q., Wang, X., Wang, H., Wang, C., Lei, X., Xiong, Y., & Zhang, W. (2017). Derivation of optimal joint operating rules for multi-purpose multi-reservoir water-supply system. Journal of Hydrology, 551, 253-264. doi:10.1016/j.jhydrol.2017.06.009 es_ES
dc.description.references Taormina, R., Chau, K.-W., & Sivakumar, B. (2015). Neural network river forecasting through baseflow separation and binary-coded swarm optimization. Journal of Hydrology, 529, 1788-1797. doi:10.1016/j.jhydrol.2015.08.008 es_ES
dc.description.references Teegavarapu, R. S. V., & Simonovic, S. P. (2000). Short-Term Operation Model for Coupled Hydropower Reservoirs. Journal of Water Resources Planning and Management, 126(2), 98-106. doi:10.1061/(asce)0733-9496(2000)126:2(98) es_ES
dc.description.references Teegavarapu, R. S. V., & Simonovic, S. P. (2002). Water Resources Management, 16(5), 401-428. doi:10.1023/a:1021993222371 es_ES
dc.description.references Tejada-Guibert, J. A., Johnson, S. A., & Stedinger, J. R. (1993). Comparison of two approaches for implementing multireservoir operating policies derived using stochastic dynamic programming. Water Resources Research, 29(12), 3969-3980. doi:10.1029/93wr02277 es_ES
dc.description.references Tilmant, A., Faouzi, E. H., & Vanclooster, M. (2002). Optimal operation of multipurpose reservoirs using flexible stochastic dynamic programming. Applied Soft Computing, 2(1), 61-74. doi:10.1016/s1568-4946(02)00029-7 es_ES
dc.description.references Tilmant, A., & Kelman, R. (2007). A stochastic approach to analyze trade-offs and risks associated with large-scale water resources systems. Water Resources Research, 43(6). doi:10.1029/2006wr005094 es_ES
dc.description.references Tilmant, A., Pinte, D., & Goor, Q. (2008). Assessing marginal water values in multipurpose multireservoir systems via stochastic programming. Water Resources Research, 44(12). doi:10.1029/2008wr007024 es_ES
dc.description.references Tilmant, A., van der Zaag, P., & Fortemps, P. (2007). Modeling and analysis of collective management of water resources. Hydrology and Earth System Sciences, 11(2), 711-720. doi:10.5194/hess-11-711-2007 es_ES
dc.description.references Tilmant, A., Vanclooster, M., Duckstein, L., & Persoons, E. (2002). Comparison of Fuzzy and Nonfuzzy Optimal Reservoir Operating Policies. Journal of Water Resources Planning and Management, 128(6), 390-398. doi:10.1061/(asce)0733-9496(2002)128:6(390) es_ES
dc.description.references Vedula, S., Mujumdar, P. P., & Chandra Sekhar, G. (2005). Conjunctive use modeling for multicrop irrigation. Agricultural Water Management, 73(3), 193-221. doi:10.1016/j.agwat.2004.10.014 es_ES
dc.description.references Vermuyten, E., Meert, P., Wolfs, V., & Willems, P. (2018). Combining Model Predictive Control with a Reduced Genetic Algorithm for Real-Time Flood Control. Journal of Water Resources Planning and Management, 144(2), 04017083. doi:10.1061/(asce)wr.1943-5452.0000859 es_ES
dc.description.references Vieira, J., Cunha, M. C., Nunes, L., Monteiro, J. P., Ribeiro, L., Stigter, T., … Lucas, H. (2011). Optimization of the Operation of Large-Scale Multisource Water-Supply Systems. Journal of Water Resources Planning and Management, 137(2), 150-161. doi:10.1061/(asce)wr.1943-5452.0000102 es_ES
dc.description.references Wan, W., Guo, X., Lei, X., Jiang, Y., & Wang, H. (2017). A Novel Optimization Method for Multi-Reservoir Operation Policy Derivation in Complex Inter-Basin Water Transfer System. Water Resources Management, 32(1), 31-51. doi:10.1007/s11269-017-1735-1 es_ES
dc.description.references Wan, W., Zhao, J., Lund, J. R., Zhao, T., Lei, X., & Wang, H. (2016). Optimal Hedging Rule for Reservoir Refill. Journal of Water Resources Planning and Management, 142(11), 04016051. doi:10.1061/(asce)wr.1943-5452.0000692 es_ES
dc.description.references Wei, C.-C., & Hsu, N.-S. (2008). Derived operating rules for a reservoir operation system: Comparison of decision trees, neural decision trees and fuzzy decision trees. Water Resources Research, 44(2). doi:10.1029/2006wr005792 es_ES
dc.description.references Wild, T. B., Reed, P. M., Loucks, D. P., Mallen-Cooper, M., & Jensen, E. D. (2019). Balancing Hydropower Development and Ecological Impacts in the Mekong: Tradeoffs for Sambor Mega Dam. Journal of Water Resources Planning and Management, 145(2), 05018019. doi:10.1061/(asce)wr.1943-5452.0001036 es_ES
dc.description.references Wurbs, R. A. (1993). Reservoir‐System Simulation and Optimization Models. Journal of Water Resources Planning and Management, 119(4), 455-472. doi:10.1061/(asce)0733-9496(1993)119:4(455) es_ES
dc.description.references Yang, P., & Ng, T. L. (2017). Fuzzy Inference System for Robust Rule-Based Reservoir Operation under Nonstationary Inflows. Journal of Water Resources Planning and Management, 143(4), 04016084. doi:10.1061/(asce)wr.1943-5452.0000743 es_ES
dc.description.references Yang, T., Gao, X., Sorooshian, S., & Li, X. (2016). Simulating California reservoir operation using the classification and regression-tree algorithm combined with a shuffled cross-validation scheme. Water Resources Research, 52(3), 1626-1651. doi:10.1002/2015wr017394 es_ES
dc.description.references Yeh, W. W.-G. (1985). Reservoir Management and Operations Models: A State-of-the-Art Review. Water Resources Research, 21(12), 1797-1818. doi:10.1029/wr021i012p01797 es_ES
dc.description.references You, J.-Y., & Cai, X. (2008). Determining forecast and decision horizons for reservoir operations under hedging policies. Water Resources Research, 44(11). doi:10.1029/2008wr006978 es_ES
dc.description.references Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi:10.1016/s0019-9958(65)90241-x es_ES
dc.description.references Zeff, H. B., Kasprzyk, J. R., Herman, J. D., Reed, P. M., & Characklis, G. W. (2014). Navigating financial and supply reliability tradeoffs in regional drought management portfolios. Water Resources Research, 50(6), 4906-4923. doi:10.1002/2013wr015126 es_ES
dc.description.references Zhang, X., Liu, P., Xu, C.-Y., Guo, S., Gong, Y., & Li, H. (2019). Derivation of Hydropower Rules for Multireservoir Systems and Its Application for Optimal Reservoir Storage Allocation. Journal of Water Resources Planning and Management, 145(5), 04019010. doi:10.1061/(asce)wr.1943-5452.0001056 es_ES
dc.description.references Zhu, X., Zhang, C., Yin, J., Zhou, H., & Jiang, Y. (2014). Optimization of Water Diversion Based on Reservoir Operating Rules: Analysis of the Biliu River Reservoir, China. Journal of Hydrologic Engineering, 19(2), 411-421. doi:10.1061/(asce)he.1943-5584.0000805 es_ES
dc.description.references Zubaidi, S. L., Gharghan, S. K., Dooley, J., Alkhaddar, R. M., & Abdellatif, M. (2018). Short-Term Urban Water Demand Prediction Considering Weather Factors. Water Resources Management, 32(14), 4527-4542. doi:10.1007/s11269-018-2061-y es_ES
dc.subject.ods 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem