- -

A Front-Line and Cost-Effective Model for the Assessment of Service Life of Network Pipes

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

A Front-Line and Cost-Effective Model for the Assessment of Service Life of Network Pipes

Show full item record

Ramírez-Aguilar, RX.; López Jiménez, PA.; Torres Toro, D.; Cobacho Jordán, R. (2020). A Front-Line and Cost-Effective Model for the Assessment of Service Life of Network Pipes. Water. 12(3):1-23. https://doi.org/10.3390/w12030667

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140507

Files in this item

Item Metadata

Title: A Front-Line and Cost-Effective Model for the Assessment of Service Life of Network Pipes
Author: Ramírez-Aguilar, Roberto Xavier López Jiménez, Petra Amparo Torres Toro, David Cobacho Jordán, Ricardo
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Issued date:
Abstract:
[EN] In any water utility, a reliable assessment of the service life of the network pipes is a key piece within the big puzzle of assets management. This paper presents a new statistical model (basic pipes life assessment, ...[+]
Subjects: Pipes , Service life assessment , Failure forecasting , Asset management , Weibull , Bath curve
Copyrigths: Reconocimiento (by)
Source:
Water. (issn: 2073-4441 )
DOI: 10.3390/w12030667
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/w12030667
Thanks:
The authors would like to thank Global Omnium for the support provided, both directly and through the Catedra Aguas de Valencia of the UPV, for the development of the works presented in this paper.
Type: Artículo

References

Shamir, U., & Howard, C. D. D. (1979). An Analytic Approach to Scheduling Pipe Replacement. Journal - American Water Works Association, 71(5), 248-258. doi:10.1002/j.1551-8833.1979.tb04345.x

Kleiner, Y., Nafi, A., & Rajani, B. (2010). Planning renewal of water mains while considering deterioration, economies of scale and adjacent infrastructure. Water Supply, 10(6), 897-906. doi:10.2166/ws.2010.571

Christodoulou, S., & Deligianni, A. (2009). A Neurofuzzy Decision Framework for the Management of Water Distribution Networks. Water Resources Management, 24(1), 139-156. doi:10.1007/s11269-009-9441-2 [+]
Shamir, U., & Howard, C. D. D. (1979). An Analytic Approach to Scheduling Pipe Replacement. Journal - American Water Works Association, 71(5), 248-258. doi:10.1002/j.1551-8833.1979.tb04345.x

Kleiner, Y., Nafi, A., & Rajani, B. (2010). Planning renewal of water mains while considering deterioration, economies of scale and adjacent infrastructure. Water Supply, 10(6), 897-906. doi:10.2166/ws.2010.571

Christodoulou, S., & Deligianni, A. (2009). A Neurofuzzy Decision Framework for the Management of Water Distribution Networks. Water Resources Management, 24(1), 139-156. doi:10.1007/s11269-009-9441-2

Kutyłowska, M. (2015). Neural network approach for failure rate prediction. Engineering Failure Analysis, 47, 41-48. doi:10.1016/j.engfailanal.2014.10.007

Motiee, H., & Ghasemnejad, S. (2018). Prediction of pipe failure rate in Tehran water distribution networks by applying regression models. Water Supply, 19(3), 695-702. doi:10.2166/ws.2018.137

Di Nardo, A., Di Natale, M., Giudicianni, C., Greco, R., & Santonastaso, G. F. (2017). Complex network and fractal theory for the assessment of water distribution network resilience to pipe failures. Water Supply, 18(3), 767-777. doi:10.2166/ws.2017.124

Kutyłowska, M. (2018). Forecasting failure rate of water pipes. Water Supply, 19(1), 264-273. doi:10.2166/ws.2018.078

Le Gat, Y., & Eisenbeis, P. (2000). Using maintenance records to forecast failures in water networks. Urban Water, 2(3), 173-181. doi:10.1016/s1462-0758(00)00057-1

Alvisi, S., & Franchini, M. (2010). Comparative analysis of two probabilistic pipe breakage models applied to a real water distribution system. Civil Engineering and Environmental Systems, 27(1), 1-22. doi:10.1080/10286600802224064

Kimutai, E., Betrie, G., Brander, R., Sadiq, R., & Tesfamariam, S. (2015). Comparison of Statistical Models for Predicting Pipe Failures: Illustrative Example with the City of Calgary Water Main Failure. Journal of Pipeline Systems Engineering and Practice, 6(4), 04015005. doi:10.1061/(asce)ps.1949-1204.0000196

Santos, P., Amado, C., Coelho, S. T., & Leitão, J. P. (2016). Stochastic data mining tools for pipe blockage failure prediction. Urban Water Journal, 14(4), 343-353. doi:10.1080/1573062x.2016.1148178

Debón, A., Carrión, A., Cabrera, E., & Solano, H. (2010). Comparing risk of failure models in water supply networks using ROC curves. Reliability Engineering & System Safety, 95(1), 43-48. doi:10.1016/j.ress.2009.07.004

Davis, P., Silva, D. D., Marlow, D., Moglia, M., Gould, S., & Burn, S. (2008). Failure prediction and optimal scheduling of replacements in asbestos cement water pipes. Journal of Water Supply: Research and Technology-Aqua, 57(4), 239-252. doi:10.2166/aqua.2008.035

Punurai, W., & Davis, P. (2017). Prediction of Asbestos Cement Water Pipe Aging and Pipe Prioritization Using Monte Carlo Simulation. Engineering Journal, 21(2), 1-13. doi:10.4186/ej.2017.21.2.1

Yoo, D., Kang, D., Jun, H., & Kim, J. (2014). Rehabilitation Priority Determination of Water Pipes Based on Hydraulic Importance. Water, 6(12), 3864-3887. doi:10.3390/w6123864

D’Ercole, M., Righetti, M., Raspati, G., Bertola, P., & Maria Ugarelli, R. (2018). Rehabilitation Planning of Water Distribution Network through a Reliability—Based Risk Assessment. Water, 10(3), 277. doi:10.3390/w10030277

Rajani, B., & Kleiner, Y. (2001). Comprehensive review of structural deterioration of water mains: physically based models. Urban Water, 3(3), 151-164. doi:10.1016/s1462-0758(01)00032-2

Kropp, I., & Baur, R. (2005). Integrated failure forecasting model for the strategic rehabilitation planning process. Water Supply, 5(2), 1-8. doi:10.2166/ws.2005.0015

García-Mora, B., Debón, A., Santamaría, C., & Carrión, A. (2015). Modelling the failure risk for water supply networks with interval-censored data. Reliability Engineering & System Safety, 144, 311-318. doi:10.1016/j.ress.2015.08.003

Lei, Y. (2008). Evaluation of three methods for estimating the Weibull distribution parameters of Chinese pine (Pinus tabulaeformis ). Journal of Forest Science, 54(No. 12), 566-571. doi:10.17221/68/2008-jfs

Datsiou, K. C., & Overend, M. (2018). Weibull parameter estimation and goodness-of-fit for glass strength data. Structural Safety, 73, 29-41. doi:10.1016/j.strusafe.2018.02.002

Package survival https://cran.r-project.org/web/packages/survival/survival.pdf

Christodoulou, S. E. (2010). Water Network Assessment and Reliability Analysis by Use of Survival Analysis. Water Resources Management, 25(4), 1229-1238. doi:10.1007/s11269-010-9679-8

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record