Shamir, U., & Howard, C. D. D. (1979). An Analytic Approach to Scheduling Pipe Replacement. Journal - American Water Works Association, 71(5), 248-258. doi:10.1002/j.1551-8833.1979.tb04345.x
Kleiner, Y., Nafi, A., & Rajani, B. (2010). Planning renewal of water mains while considering deterioration, economies of scale and adjacent infrastructure. Water Supply, 10(6), 897-906. doi:10.2166/ws.2010.571
Christodoulou, S., & Deligianni, A. (2009). A Neurofuzzy Decision Framework for the Management of Water Distribution Networks. Water Resources Management, 24(1), 139-156. doi:10.1007/s11269-009-9441-2
[+]
Shamir, U., & Howard, C. D. D. (1979). An Analytic Approach to Scheduling Pipe Replacement. Journal - American Water Works Association, 71(5), 248-258. doi:10.1002/j.1551-8833.1979.tb04345.x
Kleiner, Y., Nafi, A., & Rajani, B. (2010). Planning renewal of water mains while considering deterioration, economies of scale and adjacent infrastructure. Water Supply, 10(6), 897-906. doi:10.2166/ws.2010.571
Christodoulou, S., & Deligianni, A. (2009). A Neurofuzzy Decision Framework for the Management of Water Distribution Networks. Water Resources Management, 24(1), 139-156. doi:10.1007/s11269-009-9441-2
Kutyłowska, M. (2015). Neural network approach for failure rate prediction. Engineering Failure Analysis, 47, 41-48. doi:10.1016/j.engfailanal.2014.10.007
Motiee, H., & Ghasemnejad, S. (2018). Prediction of pipe failure rate in Tehran water distribution networks by applying regression models. Water Supply, 19(3), 695-702. doi:10.2166/ws.2018.137
Di Nardo, A., Di Natale, M., Giudicianni, C., Greco, R., & Santonastaso, G. F. (2017). Complex network and fractal theory for the assessment of water distribution network resilience to pipe failures. Water Supply, 18(3), 767-777. doi:10.2166/ws.2017.124
Kutyłowska, M. (2018). Forecasting failure rate of water pipes. Water Supply, 19(1), 264-273. doi:10.2166/ws.2018.078
Le Gat, Y., & Eisenbeis, P. (2000). Using maintenance records to forecast failures in water networks. Urban Water, 2(3), 173-181. doi:10.1016/s1462-0758(00)00057-1
Alvisi, S., & Franchini, M. (2010). Comparative analysis of two probabilistic pipe breakage models applied to a real water distribution system. Civil Engineering and Environmental Systems, 27(1), 1-22. doi:10.1080/10286600802224064
Kimutai, E., Betrie, G., Brander, R., Sadiq, R., & Tesfamariam, S. (2015). Comparison of Statistical Models for Predicting Pipe Failures: Illustrative Example with the City of Calgary Water Main Failure. Journal of Pipeline Systems Engineering and Practice, 6(4), 04015005. doi:10.1061/(asce)ps.1949-1204.0000196
Santos, P., Amado, C., Coelho, S. T., & Leitão, J. P. (2016). Stochastic data mining tools for pipe blockage failure prediction. Urban Water Journal, 14(4), 343-353. doi:10.1080/1573062x.2016.1148178
Debón, A., Carrión, A., Cabrera, E., & Solano, H. (2010). Comparing risk of failure models in water supply networks using ROC curves. Reliability Engineering & System Safety, 95(1), 43-48. doi:10.1016/j.ress.2009.07.004
Davis, P., Silva, D. D., Marlow, D., Moglia, M., Gould, S., & Burn, S. (2008). Failure prediction and optimal scheduling of replacements in asbestos cement water pipes. Journal of Water Supply: Research and Technology-Aqua, 57(4), 239-252. doi:10.2166/aqua.2008.035
Punurai, W., & Davis, P. (2017). Prediction of Asbestos Cement Water Pipe Aging and Pipe Prioritization Using Monte Carlo Simulation. Engineering Journal, 21(2), 1-13. doi:10.4186/ej.2017.21.2.1
Yoo, D., Kang, D., Jun, H., & Kim, J. (2014). Rehabilitation Priority Determination of Water Pipes Based on Hydraulic Importance. Water, 6(12), 3864-3887. doi:10.3390/w6123864
D’Ercole, M., Righetti, M., Raspati, G., Bertola, P., & Maria Ugarelli, R. (2018). Rehabilitation Planning of Water Distribution Network through a Reliability—Based Risk Assessment. Water, 10(3), 277. doi:10.3390/w10030277
Rajani, B., & Kleiner, Y. (2001). Comprehensive review of structural deterioration of water mains: physically based models. Urban Water, 3(3), 151-164. doi:10.1016/s1462-0758(01)00032-2
Kropp, I., & Baur, R. (2005). Integrated failure forecasting model for the strategic rehabilitation planning process. Water Supply, 5(2), 1-8. doi:10.2166/ws.2005.0015
García-Mora, B., Debón, A., Santamaría, C., & Carrión, A. (2015). Modelling the failure risk for water supply networks with interval-censored data. Reliability Engineering & System Safety, 144, 311-318. doi:10.1016/j.ress.2015.08.003
Lei, Y. (2008). Evaluation of three methods for estimating the Weibull distribution parameters of Chinese pine (Pinus tabulaeformis ). Journal of Forest Science, 54(No. 12), 566-571. doi:10.17221/68/2008-jfs
Datsiou, K. C., & Overend, M. (2018). Weibull parameter estimation and goodness-of-fit for glass strength data. Structural Safety, 73, 29-41. doi:10.1016/j.strusafe.2018.02.002
Package survival https://cran.r-project.org/web/packages/survival/survival.pdf
Christodoulou, S. E. (2010). Water Network Assessment and Reliability Analysis by Use of Survival Analysis. Water Resources Management, 25(4), 1229-1238. doi:10.1007/s11269-010-9679-8
[-]