- -

Testing theoretical models of magnetic damping using an air track

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Testing theoretical models of magnetic damping using an air track

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vidaurre, Ana es_ES
dc.contributor.author Riera Guasp, Jaime es_ES
dc.contributor.author Monsoriu Serra, Juan Antonio es_ES
dc.contributor.author Gimenez Valentin, Marcos Herminio es_ES
dc.date.accessioned 2020-04-17T12:47:15Z
dc.date.available 2020-04-17T12:47:15Z
dc.date.issued 2008 es_ES
dc.identifier.issn 0143-0807 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140815
dc.description.abstract [EN] Magnetic braking is a long-established application of Lenz's law. A rigorous analysis of the laws governing this problem involves solving Maxwell's equations in a time-dependent situation. Approximate models have been developed to describe different experimental results related to this phenomenon. In this paper we present a new method for the analysis of magnetic braking using a magnet fixed to the glider of an air track. The forces acting on the glider, a result of the eddy currents, can be easily observed and measured. As a consequence of the air track inclination, the glider accelerates at the beginning, although it asymptotically tends towards a uniform rectilinear movement characterized by a terminal speed. This speed depends on the interaction between the magnetic field and the conductivity properties of the air track. Compared with previous related approaches, in our experimental setup the magnet fixed to the glider produces a magnetic braking force which acts continuously, rather than over a short period of time. The experimental results satisfactorily concur with the theoretical models adapted to this configuration. es_ES
dc.description.sponsorship The authors acknowledge the financial support from the Ministerio de Educación y Ciencia (grants FIS2005-01189 and TEC2005-07336-C02-02/MIC), Spain. es_ES
dc.language Inglés es_ES
dc.publisher IOP Publishing es_ES
dc.relation.ispartof European Journal of Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Testing theoretical models of magnetic damping using an air track es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/0143-0807/29/2/014 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//TEC2005-07336-C02-02/ES/MODELIZACION DE DISPOSITIVOS DE FIBRA DE CRISTAL FOTONICO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//FIS2005-01189/ES/ESTRUCTURAS ESPACIALES EN CRISTALES FOTONICOS NO LINEALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Vidaurre, A.; Riera Guasp, J.; Monsoriu Serra, JA.; Gimenez Valentin, MH. (2008). Testing theoretical models of magnetic damping using an air track. European Journal of Physics. 29(2):335-343. https://doi.org/10.1088/0143-0807/29/2/014 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1088/0143-0807/29/2/014 es_ES
dc.description.upvformatpinicio 335 es_ES
dc.description.upvformatpfin 343 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 29 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\32302 es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.description.references Wiederick, H. D., Gauthier, N., Campbell, D. A., & Rochon, P. (1987). Magnetic braking: Simple theory and experiment. American Journal of Physics, 55(6), 500-503. doi:10.1119/1.15103 es_ES
dc.description.references Cadwell, L. H. (1996). Magnetic damping: Analysis of an eddy current brake using an airtrack. American Journal of Physics, 64(7), 917-923. doi:10.1119/1.18122 es_ES
dc.description.references Heald, M. A. (1988). Magnetic braking: Improved theory. American Journal of Physics, 56(6), 521-522. doi:10.1119/1.15570 es_ES
dc.description.references Marcuso, M., Gass, R., Jones, D., & Rowlett, C. (1991). Magnetic drag in the quasi‐static limit: A computational method. American Journal of Physics, 59(12), 1118-1123. doi:10.1119/1.16623 es_ES
dc.description.references Marcuso, M., Gass, R., Jones, D., & Rowlett, C. (1991). Magnetic drag in the quasi‐static limit: Experimental data and analysis. American Journal of Physics, 59(12), 1123-1129. doi:10.1119/1.16829 es_ES
dc.description.references Aguirregabiria, J. M., Hernández, A., & Rivas, M. (1997). Magnetic braking revisited. American Journal of Physics, 65(9), 851-856. doi:10.1119/1.18672 es_ES
dc.description.references Kapjin Lee, & Kyihwan Park. (2002). Modeling eddy currents with boundary conditions by using Coulomb’s law and the method of images. IEEE Transactions on Magnetics, 38(2), 1333-1340. doi:10.1109/20.996020 es_ES
dc.description.references Lee, K., & Park, K. (2002). Analysis of an eddy-current brake considering finite radius and induced magnetic flux. Journal of Applied Physics, 92(9), 5532-5538. doi:10.1063/1.1510593 es_ES
dc.description.references Salzman, P. J., Burke, J. R., & Lea, S. M. (2001). The effect of electric fields in a classic introductory physics treatment of eddy current forces. American Journal of Physics, 69(5), 586-590. doi:10.1119/1.1341249 es_ES
dc.description.references Gauthier, N. (2002). Magnetic braking references. American Journal of Physics, 70(2), 103-103. doi:10.1119/1.1428286 es_ES
dc.description.references Singh, A., Mohapatra, Y. N., & Kumar, S. (2002). Electromagnetic induction and damping: Quantitative experiments using a PC interface. American Journal of Physics, 70(4), 424-427. doi:10.1119/1.1446859 es_ES
dc.description.references McCarthy, L. (1996). On the electromagnetically damped mechanical harmonic oscillator. American Journal of Physics, 64(7), 885-891. doi:10.1119/1.18115 es_ES
dc.description.references Hahn, K. D., Johnson, E. M., Brokken, A., & Baldwin, S. (1998). Eddy current damping of a magnet moving through a pipe. American Journal of Physics, 66(12), 1066-1076. doi:10.1119/1.19060 es_ES
dc.description.references MacLatchy, C. S., Backman, P., & Bogan, L. (1993). A quantitative magnetic braking experiment. American Journal of Physics, 61(12), 1096-1101. doi:10.1119/1.17356 es_ES
dc.description.references Marcuso, M., & Webber, R. M. (1996). Kinematical measurements using digital image capture. American Journal of Physics, 64(8), 1080-1083. doi:10.1119/1.18357 es_ES
dc.description.references Zollman, D., Noble, M. L., & Curtin, R. (1987). Modelling the Motion of an Athlete: An Interactive Video Lesson for Teaching Physics. Journal of Educational Technology Systems, 15(3), 249-258. doi:10.2190/f475-93wf-k677-jq1f es_ES
dc.description.references Wehrbein, W. M. (2001). Using video analysis to investigate intermediate concepts in classical mechanics. American Journal of Physics, 69(7), 818-820. doi:10.1119/1.1336835 es_ES
dc.description.references Riera, J., Monsoriu, J. A., Giménez, M. H., Hueso, J. L., & Torregrosa, J. R. (2003). Using image recognition to automate video analysis of physical processes. American Journal of Physics, 71(10), 1075-1079. doi:10.1119/1.1578066 es_ES
dc.description.references Monsoriu, J. A., Giménez, M. H., Riera, J., & Vidaurre, A. (2005). Measuring coupled oscillations using an automated video analysis technique based on image recognition. European Journal of Physics, 26(6), 1149-1155. doi:10.1088/0143-0807/26/6/023 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem