- -

Partial Activation of SA- and JA-Defensive Pathways in Strawberry upon Colletotrichum acutatum Interaction

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Partial Activation of SA- and JA-Defensive Pathways in Strawberry upon Colletotrichum acutatum Interaction

Show full item record

Amil-Ruiz, F.; Garrido-Gala, J.; Gadea Vacas, J.; Blanco-Portales, R.; Munoz-Merida, A.; Trelles, O.; De Los Santos, B.... (2016). Partial Activation of SA- and JA-Defensive Pathways in Strawberry upon Colletotrichum acutatum Interaction. Frontiers in Plant Science. 7(1036). https://doi.org/10.3389/fpls.2016.01036

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140827

Files in this item

Item Metadata

Title: Partial Activation of SA- and JA-Defensive Pathways in Strawberry upon Colletotrichum acutatum Interaction
Author: Amil-Ruiz, F. Garrido-Gala, J. Gadea Vacas, José Blanco-Portales, R. Munoz-Merida, A. Trelles, O. de los Santos, B. Arroyo, F.T. Aguado-Puig, A. Romero, F. Mercado, J.A. Pliego-Alfaro, F. Munoz-Blanco, J. Caballero, J.L.
UPV Unit: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Issued date:
Abstract:
[EN] Understanding the nature of pathogen host interaction may help improve strawberry (Fragaria x anahassa) cultivars. Plant resistance to pathogenic agents usually operates through a complex network of defense mechanisms ...[+]
Subjects: Colletotrichum acutatum , Fragaria x ananassa , Quantification of gene expression , Salicylic and jasmonic acid , Strawberry defense response
Copyrigths: Reconocimiento (by)
Source:
Frontiers in Plant Science. (eissn: 1664-462X )
DOI: 10.3389/fpls.2016.01036
Publisher:
Frontiers Media SA
Publisher version: https://doi.org/10.3389/fpls.2016.01036
Project ID:
info:eu-repo/grantAgreement/Junta de Andalucía//P07-AGR-02482/
info:eu-repo/grantAgreement/Junta de Andalucía//AGR-217/ES/Control De Enfermedades De Los Cultivos/
Thanks:
Authors are grateful to Dr. JM Lopez-Aranda (IFAPA-Centro de Churriana) for providing micropropagated strawberry plants and to Nicolas Garcia-Caparros for technical assistance. Authors also want to thank Kevin M. Folta for ...[+]
Type: Artículo

References

Acosta, I. F., & Farmer, E. E. (2010). Jasmonates. The Arabidopsis Book, 8, e0129. doi:10.1199/tab.0129

Al-Shahrour, F., Diaz-Uriarte, R., & Dopazo, J. (2004). FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics, 20(4), 578-580. doi:10.1093/bioinformatics/btg455

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410. doi:10.1016/s0022-2836(05)80360-2 [+]
Acosta, I. F., & Farmer, E. E. (2010). Jasmonates. The Arabidopsis Book, 8, e0129. doi:10.1199/tab.0129

Al-Shahrour, F., Diaz-Uriarte, R., & Dopazo, J. (2004). FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics, 20(4), 578-580. doi:10.1093/bioinformatics/btg455

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410. doi:10.1016/s0022-2836(05)80360-2

Amil-Ruiz, F., Blanco-Portales, R., Muñoz-Blanco, J., & Caballero, J. L. (2011). The Strawberry Plant Defense Mechanism: A Molecular Review. Plant and Cell Physiology, 52(11), 1873-1903. doi:10.1093/pcp/pcr136

Amil-Ruiz, F., Garrido-Gala, J., Blanco-Portales, R., Folta, K. M., Muñoz-Blanco, J., & Caballero, J. L. (2013). Identification and Validation of Reference Genes for Transcript Normalization in Strawberry (Fragaria × ananassa) Defense Responses. PLoS ONE, 8(8), e70603. doi:10.1371/journal.pone.0070603

Arroyo, F. T., Moreno, J., García-Herdugo, G., Santos, B. D. los, Barrau, C., Porras, M., … Romero, F. (2005). Ultrastructure of the early stages of Colletotrichum acutatum infection of strawberry tissues. Canadian Journal of Botany, 83(5), 491-500. doi:10.1139/b05-022

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., … Sherlock, G. (2000). Gene Ontology: tool for the unification of biology. Nature Genetics, 25(1), 25-29. doi:10.1038/75556

Aviv, D. H., Rustérucci, C., Iii, B. F. H., Dietrich, R. A., Parker, J. E., & Dangl, J. L. (2002). Runaway cell death, but not basal disease resistance, inlsd1is SA- andNIM1/NPR1-dependent. The Plant Journal, 29(3), 381-391. doi:10.1046/j.0960-7412.2001.01225.x

Bak, S., Beisson, F., Bishop, G., Hamberger, B., Höfer, R., Paquette, S., & Werck-Reichhart, D. (2011). Cytochromes P450. The Arabidopsis Book, 9, e0144. doi:10.1199/tab.0144

Baniwal, S. K., Bharti, K., Chan, K. Y., Fauth, M., Ganguli, A., Kotak, S., … von Koskull-DÖring, P. (2004). Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. Journal of Biosciences, 29(4), 471-487. doi:10.1007/bf02712120

Bhattacharjee, S. (2012). The Language of Reactive Oxygen Species Signaling in Plants. Journal of Botany, 2012, 1-22. doi:10.1155/2012/985298

Birkenbihl, R. P., Diezel, C., & Somssich, I. E. (2012). Arabidopsis WRKY33 Is a Key Transcriptional Regulator of Hormonal and Metabolic Responses toward Botrytis cinerea Infection. Plant Physiology, 159(1), 266-285. doi:10.1104/pp.111.192641

Caarls, L., Pieterse, C. M. J., & Van Wees, S. C. M. (2015). How salicylic acid takes transcriptional control over jasmonic acid signaling. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00170

Casado-Díaz, A., Encinas-Villarejo, S., Santos, B. de los, Schilirò, E., Yubero-Serrano, E.-M., Amil-Ruíz, F., … Caballero, J.-L. (2006). Analysis of strawberry genes differentially expressed in response to Colletotrichum infection. Physiologia Plantarum, 128(4), 633-650. doi:10.1111/j.1399-3054.2006.00798.x

Charng, Y., Liu, H., Liu, N., Chi, W., Wang, C., Chang, S., & Wang, T. (2006). A Heat-Inducible Transcription Factor, HsfA2, Is Required for Extension of Acquired Thermotolerance in Arabidopsis. Plant Physiology, 143(1), 251-262. doi:10.1104/pp.106.091322

Chung, S. H., Rosa, C., Scully, E. D., Peiffer, M., Tooker, J. F., Hoover, K., … Felton, G. W. (2013). Herbivore exploits orally secreted bacteria to suppress plant defenses. Proceedings of the National Academy of Sciences, 110(39), 15728-15733. doi:10.1073/pnas.1308867110

Curry, K. J., Abril, M., Avant, J. B., & Smith, B. J. (2002). Strawberry Anthracnose: Histopathology of Colletotrichum acutatum and C. fragariae. Phytopathology®, 92(10), 1055-1063. doi:10.1094/phyto.2002.92.10.1055

Debode, J., Van Hemelrijck, W., Baeyen, S., Creemers, P., Heungens, K., & Maes, M. (2009). Quantitative detection and monitoring ofColletotrichum acutatumin strawberry leaves using real-time PCR. Plant Pathology, 58(3), 504-514. doi:10.1111/j.1365-3059.2008.01987.x

Dempsey, D. A., & Klessig, D. F. (2012). SOS – too many signals for systemic acquired resistance? Trends in Plant Science, 17(9), 538-545. doi:10.1016/j.tplants.2012.05.011

Dodds, P. N., & Rathjen, J. P. (2010). Plant immunity: towards an integrated view of plant–pathogen interactions. Nature Reviews Genetics, 11(8), 539-548. doi:10.1038/nrg2812

Doehlemann, G., Wahl, R., Horst, R. J., Voll, L. M., Usadel, B., Poree, F., … Kämper, J. (2008). Reprogramming a maize plant: transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis. The Plant Journal, 56(2), 181-195. doi:10.1111/j.1365-313x.2008.03590.x

Dong, X. (2004). NPR1, all things considered. Current Opinion in Plant Biology, 7(5), 547-552. doi:10.1016/j.pbi.2004.07.005

Durgbanshi, A., Arbona, V., Pozo, O., Miersch, O., Sancho, J. V., & Gómez-Cadenas, A. (2005). Simultaneous Determination of Multiple Phytohormones in Plant Extracts by Liquid Chromatography−Electrospray Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 53(22), 8437-8442. doi:10.1021/jf050884b

El Oirdi, M., El Rahman, T. A., Rigano, L., El Hadrami, A., Rodriguez, M. C., Daayf, F., … Bouarab, K. (2011). Botrytis cinerea Manipulates the Antagonistic Effects between Immune Pathways to Promote Disease Development in Tomato. The Plant Cell, 23(6), 2405-2421. doi:10.1105/tpc.111.083394

Encinas-Villarejo, S., Maldonado, A. M., Amil-Ruiz, F., de los Santos, B., Romero, F., Pliego-Alfaro, F., … Caballero, J. L. (2009). Evidence for a positive regulatory role of strawberry (Fragaria×ananassa) Fa WRKY1 and Arabidopsis At WRKY75 proteins in resistance. Journal of Experimental Botany, 60(11), 3043-3065. doi:10.1093/jxb/erp152

Freeman, S., Horowitz, S., & Sharon, A. (2001). Pathogenic and Nonpathogenic Lifestyles in Colletotrichum acutatum from Strawberry and Other Plants. Phytopathology®, 91(10), 986-992. doi:10.1094/phyto.2001.91.10.986

Freeman, S., Katan, T., & Shabi, E. (1998). Characterization of Colletotrichum Species Responsible for Anthracnose Diseases of Various Fruits. Plant Disease, 82(6), 596-605. doi:10.1094/pdis.1998.82.6.596

Gfeller, A., Dubugnon, L., Liechti, R., & Farmer, E. E. (2010). Jasmonate Biochemical Pathway. Science Signaling, 3(109), cm3-cm3. doi:10.1126/scisignal.3109cm3

Grellet-Bournonville, C. F., Martinez-Zamora, M. G., Castagnaro, A. P., & Díaz-Ricci, J. C. (2012). Temporal accumulation of salicylic acid activates the defense response against Colletotrichum in strawberry. Plant Physiology and Biochemistry, 54, 10-16. doi:10.1016/j.plaphy.2012.01.019

Guidarelli, M., Carbone, F., Mourgues, F., Perrotta, G., Rosati, C., Bertolini, P., & Baraldi, E. (2011). Colletotrichum acutatum interactions with unripe and ripe strawberry fruits and differential responses at histological and transcriptional levels. Plant Pathology, 60(4), 685-697. doi:10.1111/j.1365-3059.2010.02423.x

Heidrich, K., Wirthmueller, L., Tasset, C., Pouzet, C., Deslandes, L., & Parker, J. E. (2011). Arabidopsis EDS1 Connects Pathogen Effector Recognition to Cell Compartment-Specific Immune Responses. Science, 334(6061), 1401-1404. doi:10.1126/science.1211641

Horowitz, S., Freeman, S., & Sharon, A. (2002). Use of Green Fluorescent Protein-Transgenic Strains to Study Pathogenic and Nonpathogenic Lifestyles in Colletotrichum acutatum. Phytopathology®, 92(7), 743-749. doi:10.1094/phyto.2002.92.7.743

Ikeda, M., Mitsuda, N., & Ohme-Takagi, M. (2011). Arabidopsis HsfB1 and HsfB2b Act as Repressors of the Expression of Heat-Inducible Hsfs But Positively Regulate the Acquired Thermotolerance. Plant Physiology, 157(3), 1243-1254. doi:10.1104/pp.111.179036

Ikeda, M., & Ohme-Takagi, M. (2009). A Novel Group of Transcriptional Repressors in Arabidopsis. Plant and Cell Physiology, 50(5), 970-975. doi:10.1093/pcp/pcp048

Khan, A. A., & Shih, D. S. (2004). Molecular cloning, characterization, and expression analysis of two class II chitinase genes from the strawberry plant. Plant Science, 166(3), 753-762. doi:10.1016/j.plantsci.2003.11.015

Krinke, O., Ruelland, E., Valentová, O., Vergnolle, C., Renou, J.-P., Taconnat, L., … Zachowski, A. (2007). Phosphatidylinositol 4-Kinase Activation Is an Early Response to Salicylic Acid in Arabidopsis Suspension Cells. Plant Physiology, 144(3), 1347-1359. doi:10.1104/pp.107.100842

Kubigsteltig, I., Laudert, D., & Weiler, E. W. (1999). Structure and regulation of the Arabidopsis thaliana allene oxide synthase gene. Planta, 208(4), 463-471. doi:10.1007/s004250050583

Leandro, L. F. S., Gleason, M. L., Nutter, F. W., Wegulo, S. N., & Dixon, P. M. (2001). Germination and Sporulation of Colletotrichum acutatum on Symptomless Strawberry Leaves. Phytopathology®, 91(7), 659-664. doi:10.1094/phyto.2001.91.7.659

Leon-Reyes, A., Van der Does, D., De Lange, E. S., Delker, C., Wasternack, C., Van Wees, S. C. M., … Pieterse, C. M. J. (2010). Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. Planta, 232(6), 1423-1432. doi:10.1007/s00425-010-1265-z

Li, J., Brader, G., Kariola, T., & Tapio Palva, E. (2006). WRKY70 modulates the selection of signaling pathways in plant defense. The Plant Journal, 46(3), 477-491. doi:10.1111/j.1365-313x.2006.02712.x

Li, J., Brader, G., & Palva, E. T. (2004). The WRKY70 Transcription Factor: A Node of Convergence for Jasmonate-Mediated and Salicylate-Mediated Signals in Plant Defense. The Plant Cell, 16(2), 319-331. doi:10.1105/tpc.016980

Liu, P.-P., von Dahl, C. C., Park, S.-W., & Klessig, D. F. (2011). Interconnection between Methyl Salicylate and Lipid-Based Long-Distance Signaling during the Development of Systemic Acquired Resistance in Arabidopsis and Tobacco. Plant Physiology, 155(4), 1762-1768. doi:10.1104/pp.110.171694

Lodha, T. D., & Basak, J. (2011). Plant–Pathogen Interactions: What Microarray Tells About It? Molecular Biotechnology, 50(1), 87-97. doi:10.1007/s12033-011-9418-2

López-Ráez, J. A., Verhage, A., Fernández, I., García, J. M., Azcón-Aguilar, C., Flors, V., & Pozo, M. J. (2010). Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. Journal of Experimental Botany, 61(10), 2589-2601. doi:10.1093/jxb/erq089

Maas, J. L. (Ed.). (1998). Compendium of Strawberry Diseases, Second Edition. doi:10.1094/9780890546178

Makowski, R. M. D., & Mortensen, K. (1998). Latent infections and penetration of the bioherbicide agent Colletotrichum gloeosporioides f. sp. malvae in non-target field crops under controlled environmental conditions. Mycological Research, 102(12), 1545-1552. doi:10.1017/s0953756298006960

Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K. A., … Dietrich, R. A. (2000). The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature Genetics, 26(4), 403-410. doi:10.1038/82521

Marcel, S., Sawers, R., Oakeley, E., Angliker, H., & Paszkowski, U. (2010). Tissue-Adapted Invasion Strategies of the Rice Blast Fungus Magnaporthe oryzae. The Plant Cell, 22(9), 3177-3187. doi:10.1105/tpc.110.078048

Ndamukong, I., Abdallat, A. A., Thurow, C., Fode, B., Zander, M., Weigel, R., & Gatz, C. (2007). SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription. The Plant Journal, 50(1), 128-139. doi:10.1111/j.1365-313x.2007.03039.x

Pajerowska-Mukhtar, K. M., Wang, W., Tada, Y., Oka, N., Tucker, C. L., Fonseca, J. P., & Dong, X. (2012). The HSF-like Transcription Factor TBF1 Is a Major Molecular Switch for Plant Growth-to-Defense Transition. Current Biology, 22(2), 103-112. doi:10.1016/j.cub.2011.12.015

Pe�a-Cort�s, H., Barrios, P., Dorta, F., Polanco, V., S�nchez, C., S�nchez, E., & Ram�rez, I. (2004). Involvement of Jasmonic Acid and Derivatives in Plant Response to Pathogen and Insects and in Fruit Ripening. Journal of Plant Growth Regulation, 23(3), 246-260. doi:10.1007/s00344-004-0035-1

Pernas, M., Ryan, E., & Dolan, L. (2010). SCHIZORIZA Controls Tissue System Complexity in Plants. Current Biology, 20(9), 818-823. doi:10.1016/j.cub.2010.02.062

Pieterse, C. M. J., Leon-Reyes, A., Van der Ent, S., & Van Wees, S. C. M. (2009). Networking by small-molecule hormones in plant immunity. Nature Chemical Biology, 5(5), 308-316. doi:10.1038/nchembio.164

Rahman, T. A. E., Oirdi, M. E., Gonzalez-Lamothe, R., & Bouarab, K. (2012). Necrotrophic Pathogens Use the Salicylic Acid Signaling Pathway to Promote Disease Development in Tomato. Molecular Plant-Microbe Interactions®, 25(12), 1584-1593. doi:10.1094/mpmi-07-12-0187-r

Ren, C.-M., Zhu, Q., Gao, B.-D., Ke, S.-Y., Yu, W.-C., Xie, D.-X., & Peng, W. (2008). Transcription Factor WRKY70 Displays Important but No Indispensable Roles in Jasmonate and Salicylic Acid Signaling. Journal of Integrative Plant Biology, 50(5), 630-637. doi:10.1111/j.1744-7909.2008.00653.x

Rietz, S., Stamm, A., Malonek, S., Wagner, S., Becker, D., Medina-Escobar, N., … Parker, J. E. (2011). Different roles of Enhanced Disease Susceptibility1 (EDS1) bound to and dissociated from Phytoalexin Deficient4 (PAD4) in Arabidopsis immunity. New Phytologist, 191(1), 107-119. doi:10.1111/j.1469-8137.2011.03675.x

Robert-Seilaniantz, A., Grant, M., & Jones, J. D. G. (2011). Hormone Crosstalk in Plant Disease and Defense: More Than Just JASMONATE-SALICYLATE Antagonism. Annual Review of Phytopathology, 49(1), 317-343. doi:10.1146/annurev-phyto-073009-114447

Cristina, M., Petersen, M., & Mundy, J. (2010). Mitogen-Activated Protein Kinase Signaling in Plants. Annual Review of Plant Biology, 61(1), 621-649. doi:10.1146/annurev-arplant-042809-112252

Rouhier, N. (2006). Genome-wide analysis of plant glutaredoxin systems. Journal of Experimental Botany, 57(8), 1685-1696. doi:10.1093/jxb/erl001

Ruepp, A. (2004). The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Research, 32(18), 5539-5545. doi:10.1093/nar/gkh894

Rusterucci, C. (2001). The Disease Resistance Signaling Components EDS1 and PAD4 Are Essential Regulators of the Cell Death Pathway Controlled by LSD1 in Arabidopsis. THE PLANT CELL ONLINE, 13(10), 2211-2224. doi:10.1105/tpc.13.10.2211

Sarowar, S., Zhao, Y., Soria-Guerra, R. E., Ali, S., Zheng, D., Wang, D., & Korban, S. S. (2011). Expression profiles of differentially regulated genes during the early stages of apple flower infection with Erwinia amylovora. Journal of Experimental Botany, 62(14), 4851-4861. doi:10.1093/jxb/err147

Sasaki, Y. (2001). Monitoring of Methyl Jasmonate-responsive Genes in Arabidopsis by cDNA Macroarray: Self-activation of Jasmonic Acid Biosynthesis and Crosstalk with Other Phytohormone Signaling Pathways. DNA Research, 8(4), 153-161. doi:10.1093/dnares/8.4.153

Schenk, P. M., Kazan, K., Manners, J. M., Anderson, J. P., Simpson, R. S., Wilson, I. W., … Maclean, D. J. (2003). Systemic Gene Expression in Arabidopsis during an Incompatible Interaction with Alternaria brassicicola. Plant Physiology, 132(2), 999-1010. doi:10.1104/pp.103.021683

Simpson, D. W. (1991). Resistance toBotrytis cinereain pistillate genotypes of the cultivated strawberryFragaria ananassa. Journal of Horticultural Science, 66(6), 719-723. doi:10.1080/00221589.1991.11516203

Shulaev, V., Sargent, D. J., Crowhurst, R. N., Mockler, T. C., Folkerts, O., Delcher, A. L., … Mane, S. P. (2010). The genome of woodland strawberry (Fragaria vesca). Nature Genetics, 43(2), 109-116. doi:10.1038/ng.740

Song, W. C., Funk, C. D., & Brash, A. R. (1993). Molecular cloning of an allene oxide synthase: a cytochrome P450 specialized for the metabolism of fatty acid hydroperoxides. Proceedings of the National Academy of Sciences, 90(18), 8519-8523. doi:10.1073/pnas.90.18.8519

Spoel, S. H., & Dong, X. (2012). How do plants achieve immunity? Defence without specialized immune cells. Nature Reviews Immunology, 12(2), 89-100. doi:10.1038/nri3141

Spoel, S. H., Johnson, J. S., & Dong, X. (2007). Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proceedings of the National Academy of Sciences, 104(47), 18842-18847. doi:10.1073/pnas.0708139104

Staswick, P. E., & Tiryaki, I. (2004). The Oxylipin Signal Jasmonic Acid Is Activated by an Enzyme That Conjugates It to Isoleucine in Arabidopsis. The Plant Cell, 16(8), 2117-2127. doi:10.1105/tpc.104.023549

Ten Hove, C. A., Willemsen, V., de Vries, W. J., van Dijken, A., Scheres, B., & Heidstra, R. (2010). SCHIZORIZA Encodes a Nuclear Factor Regulating Asymmetry of Stem Cell Divisions in the Arabidopsis Root. Current Biology, 20(5), 452-457. doi:10.1016/j.cub.2010.01.018

Turner, J. G., Ellis, C., & Devoto, A. (2002). The Jasmonate Signal Pathway. The Plant Cell, 14(suppl 1), S153-S164. doi:10.1105/tpc.000679

Tusher, V. G., Tibshirani, R., & Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences, 98(9), 5116-5121. doi:10.1073/pnas.091062498

Uknes, S., Mauch-Mani, B., Moyer, M., Potter, S., Williams, S., Dincher, S., … Ryals, J. (1992). Acquired resistance in Arabidopsis. The Plant Cell, 4(6), 645-656. doi:10.1105/tpc.4.6.645

Vargas, W. A., Martín, J. M. S., Rech, G. E., Rivera, L. P., Benito, E. P., Díaz-Mínguez, J. M., … Sukno, S. A. (2012). Plant Defense Mechanisms Are Activated during Biotrophic and Necrotrophic Development of Colletotricum graminicola in Maize. Plant Physiology, 158(3), 1342-1358. doi:10.1104/pp.111.190397

Venugopal, S. C., Jeong, R.-D., Mandal, M. K., Zhu, S., Chandra-Shekara, A. C., Xia, Y., … Kachroo, P. (2009). Enhanced Disease Susceptibility 1 and Salicylic Acid Act Redundantly to Regulate Resistance Gene-Mediated Signaling. PLoS Genetics, 5(7), e1000545. doi:10.1371/journal.pgen.1000545

Vlot, A. C., Liu, P.-P., Cameron, R. K., Park, S.-W., Yang, Y., Kumar, D., … Klessig, D. F. (2008). Identification of likely orthologs of tobacco salicylic acid-binding protein 2 and their role in systemic acquired resistance inArabidopsis thaliana. The Plant Journal, 56(3), 445-456. doi:10.1111/j.1365-313x.2008.03618.x

Wang, D., Amornsiripanitch, N., & Dong, X. (2006). A Genomic Approach to Identify Regulatory Nodes in the Transcriptional Network of Systemic Acquired Resistance in Plants. PLoS Pathogens, 2(11), e123. doi:10.1371/journal.ppat.0020123

Wang, D. (2005). Induction of Protein Secretory Pathway Is Required for Systemic Acquired Resistance. Science, 308(5724), 1036-1040. doi:10.1126/science.1108791

Wang, G.-F., Seabolt, S., Hamdoun, S., Ng, G., Park, J., & Lu, H. (2011). Multiple Roles of WIN3 in Regulating Disease Resistance, Cell Death, and Flowering Time in Arabidopsis. Plant Physiology, 156(3), 1508-1519. doi:10.1104/pp.111.176776

Wiermer, M., Feys, B. J., & Parker, J. E. (2005). Plant immunity: the EDS1 regulatory node. Current Opinion in Plant Biology, 8(4), 383-389. doi:10.1016/j.pbi.2005.05.010

Windram, O., Madhou, P., McHattie, S., Hill, C., Hickman, R., Cooke, E., … Denby, K. J. (2012). Arabidopsis Defense against Botrytis cinerea: Chronology and Regulation Deciphered by High-Resolution Temporal Transcriptomic Analysis. The Plant Cell, 24(9), 3530-3557. doi:10.1105/tpc.112.102046

Yang, Y. H. (2002). Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research, 30(4), 15e-15. doi:10.1093/nar/30.4.e15

Yang, Y., Xu, R., Ma, C., Vlot, A. C., Klessig, D. F., & Pichersky, E. (2008). Inactive Methyl Indole-3-Acetic Acid Ester Can Be Hydrolyzed and Activated by Several Esterases Belonging to the AtMES Esterase Family of Arabidopsis. Plant Physiology, 147(3), 1034-1045. doi:10.1104/pp.108.118224

Zamora, M. G. M., Bournonville, C. G., Castagnaro, A. P., & Ricci, J. C. D. (2012). Identification and characterisation of a novel class I endo-β-1,3-glucanase regulated by salicylic acid, ethylene and fungal pathogens in strawberry. Functional Plant Biology, 39(5), 412. doi:10.1071/fp11275

Zander, M., Chen, S., Imkampe, J., Thurow, C., & Gatz, C. (2012). Repression of the Arabidopsis thaliana Jasmonic Acid/Ethylene-Induced Defense Pathway by TGA-Interacting Glutaredoxins Depends on Their C-Terminal ALWL Motif. Molecular Plant, 5(4), 831-840. doi:10.1093/mp/ssr113

Ziemann, M., Bhave, M., & Zachgo, S. (2009). Origin and Diversification of Land Plant CC-Type Glutaredoxins. Genome Biology and Evolution, 1, 265-277. doi:10.1093/gbe/evp025

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record