- -

Sliding mode control for robust and smooth reference tracking in robot visual servoing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sliding mode control for robust and smooth reference tracking in robot visual servoing

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Muñoz-Benavent, Pau es_ES
dc.contributor.author Gracia, Luis es_ES
dc.contributor.author Solanes, J. Ernesto es_ES
dc.contributor.author Esparza, Alicia es_ES
dc.contributor.author Tornero, Josep es_ES
dc.date.accessioned 2020-04-17T12:47:52Z
dc.date.available 2020-04-17T12:47:52Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1049-8923 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140831
dc.description.abstract [EN] An approach based on sliding mode is proposed in this work for reference tracking in robot visual servoing. In particular, 2 sliding mode controls are obtained depending on whether joint accelerations or joint jerks are considered as the discontinuous control action. Both sliding mode controls are extensively compared in a 3D-simulated environment with their equivalent well-known continuous controls, which can be found in the literature, to highlight their similarities and differences. The main advantages of the proposed method are smoothness, robustness, and low computational cost. The applicability and robustness of the proposed approach are substantiated by experimental results using a conventional 6R industrial manipulator (KUKA KR 6 R900 sixx [AGILUS]) for positioning and tracking tasks. es_ES
dc.description.sponsorship Spanish Government, Grant/Award Number: BES-2010-038486; Generalitat Valenciana, Grant/Award Number: BEST/2017/029 and APOSTD/2016/044 es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof International Journal of Robust and Nonlinear Control es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Control applications es_ES
dc.subject Nonlinear control es_ES
dc.subject Robot system es_ES
dc.subject Robust control es_ES
dc.subject Sliding mode control es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Sliding mode control for robust and smooth reference tracking in robot visual servoing es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/rnc.3981 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//BEST%2F2017%2F029/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BES-2010-038486/ES/BES-2010-038486/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2016%2F044/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-87656-C2-1-R/ES/VISION ARTIFICIAL Y ROBOTICA COLABORATIVA EN PULIDO DE SUPERFICIES EN LA INDUSTRIA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Muñoz-Benavent, P.; Gracia, L.; Solanes, JE.; Esparza, A.; Tornero, J. (2018). Sliding mode control for robust and smooth reference tracking in robot visual servoing. International Journal of Robust and Nonlinear Control. 28(5):1728-1756. https://doi.org/10.1002/rnc.3981 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/rnc.3981 es_ES
dc.description.upvformatpinicio 1728 es_ES
dc.description.upvformatpfin 1756 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 28 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\352247 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Hutchinson, S., Hager, G. D., & Corke, P. I. (1996). A tutorial on visual servo control. IEEE Transactions on Robotics and Automation, 12(5), 651-670. doi:10.1109/70.538972 es_ES
dc.description.references Chaumette, F., & Hutchinson, S. (2008). Visual Servoing and Visual Tracking. Springer Handbook of Robotics, 563-583. doi:10.1007/978-3-540-30301-5_25 es_ES
dc.description.references Corke, P. (2011). Robotics, Vision and Control. Springer Tracts in Advanced Robotics. doi:10.1007/978-3-642-20144-8 es_ES
dc.description.references RYAN, E. P., & CORLESS, M. (1984). Ultimate Boundedness and Asymptotic Stability of a Class of Uncertain Dynamical Systems via Continuous and Discontinuous Feedback Control. IMA Journal of Mathematical Control and Information, 1(3), 223-242. doi:10.1093/imamci/1.3.223 es_ES
dc.description.references Chaumette, F., & Hutchinson, S. (2006). Visual servo control. I. Basic approaches. IEEE Robotics & Automation Magazine, 13(4), 82-90. doi:10.1109/mra.2006.250573 es_ES
dc.description.references Chaumette, F., & Hutchinson, S. (2007). Visual servo control. II. Advanced approaches [Tutorial]. IEEE Robotics & Automation Magazine, 14(1), 109-118. doi:10.1109/mra.2007.339609 es_ES
dc.description.references Bonfe M Mainardi E Fantuzzi C Variable structure PID based visual servoing for robotic tracking and manipulation 2002 Lausanne, Switzerland https://doi.org/10.1109/IRDS.2002.1041421 es_ES
dc.description.references Solanes, J. E., Muñoz-Benavent, P., Girbés, V., Armesto, L., & Tornero, J. (2015). On improving robot image-based visual servoing based on dual-rate reference filtering control strategy. Robotica, 34(12), 2842-2859. doi:10.1017/s0263574715000454 es_ES
dc.description.references Elena M Cristiano M Damiano F Bonfe M Variable structure PID controller for cooperative eye-in-hand/eye-to-hand visual servoing 2003 Istanbul, Turkey https://doi.org/10.1109/CCA.2003.1223145 es_ES
dc.description.references Hashimoto, K., Ebine, T., & Kimura, H. (1996). Visual servoing with hand-eye manipulator-optimal control approach. IEEE Transactions on Robotics and Automation, 12(5), 766-774. doi:10.1109/70.538981 es_ES
dc.description.references Chan A Leonard S Croft EA Little JJ Collision-free visual servoing of an eye-in-hand manipulator via constraint-aware planning and control 2011 San Francisco, CA, USA https://doi.org/10.1109/ACC.2011.5991008 es_ES
dc.description.references Allibert, G., Courtial, E., & Chaumette, F. (2010). Visual Servoing via Nonlinear Predictive Control. Lecture Notes in Control and Information Sciences, 375-393. doi:10.1007/978-1-84996-089-2_20 es_ES
dc.description.references Kragic, D., & Christensen, H. I. (2003). Robust Visual Servoing. The International Journal of Robotics Research, 22(10-11), 923-939. doi:10.1177/027836490302210009 es_ES
dc.description.references Mezouar Y Chaumette F Path planning in image space for robust visual servoing 2000 San Francisco, CA, USA https://doi.org/10.1109/ROBOT.2000.846445 es_ES
dc.description.references Morel, G., Zanne, P., & Plestan, F. (2005). Robust visual servoing: bounding the task function tracking errors. IEEE Transactions on Control Systems Technology, 13(6), 998-1009. doi:10.1109/tcst.2005.857409 es_ES
dc.description.references Hammouda, L., Kaaniche, K., Mekki, H., & Chtourou, M. (2015). Robust visual servoing using global features based on random process. International Journal of Computational Vision and Robotics, 5(2), 138. doi:10.1504/ijcvr.2015.068803 es_ES
dc.description.references Yang YX Liu D Liu H Robot-self-learning visual servoing algorithm using neural networks 2002 Beijing, China https://doi.org/10.1109/ICMLC.2002.1174473 es_ES
dc.description.references Sadeghzadeh, M., Calvert, D., & Abdullah, H. A. (2014). Self-Learning Visual Servoing of Robot Manipulator Using Explanation-Based Fuzzy Neural Networks and Q-Learning. Journal of Intelligent & Robotic Systems, 78(1), 83-104. doi:10.1007/s10846-014-0151-5 es_ES
dc.description.references Lee AX Levine S Abbeel P Learning Visual Servoing With Deep Features and Fitted Q-Iteration 2017 es_ES
dc.description.references Fakhry, H. H., & Wilson, W. J. (1996). A modified resolved acceleration controller for position-based visual servoing. Mathematical and Computer Modelling, 24(5-6), 1-9. doi:10.1016/0895-7177(96)00112-4 es_ES
dc.description.references Keshmiri, M., Wen-Fang Xie, & Mohebbi, A. (2014). Augmented Image-Based Visual Servoing of a Manipulator Using Acceleration Command. IEEE Transactions on Industrial Electronics, 61(10), 5444-5452. doi:10.1109/tie.2014.2300048 es_ES
dc.description.references Edwards, C., & Spurgeon, S. (1998). Sliding Mode Control. doi:10.1201/9781498701822 es_ES
dc.description.references Zanne P Morel G Piestan F Robust vision based 3D trajectory tracking using sliding mode control 2000 San Francisco, CA, USA es_ES
dc.description.references Oliveira TR Peixoto AJ Leite AC Hsu L Sliding mode control of uncertain multivariable nonlinear systems applied to uncalibrated robotics visual servoing 2009 St. Louis, MO, USA es_ES
dc.description.references Oliveira, T. R., Leite, A. C., Peixoto, A. J., & Hsu, L. (2014). Overcoming Limitations of Uncalibrated Robotics Visual Servoing by means of Sliding Mode Control and Switching Monitoring Scheme. Asian Journal of Control, 16(3), 752-764. doi:10.1002/asjc.899 es_ES
dc.description.references Li, F., & Xie, H.-L. (2010). Sliding mode variable structure control for visual servoing system. International Journal of Automation and Computing, 7(3), 317-323. doi:10.1007/s11633-010-0509-5 es_ES
dc.description.references Kim J Kim D Choi S Won S Image-based visual servoing using sliding mode control 2006 Busan, South Korea es_ES
dc.description.references Burger W Dean-Leon E Cheng G Robust second order sliding mode control for 6D position based visual servoing with a redundant mobile manipulator 2015 Seoul, South Korea es_ES
dc.description.references Becerra, H. M., López-Nicolás, G., & Sagüés, C. (2011). A Sliding-Mode-Control Law for Mobile Robots Based on Epipolar Visual Servoing From Three Views. IEEE Transactions on Robotics, 27(1), 175-183. doi:10.1109/tro.2010.2091750 es_ES
dc.description.references Parsapour, M., & Taghirad, H. D. (2015). Kernel-based sliding mode control for visual servoing system. IET Computer Vision, 9(3), 309-320. doi:10.1049/iet-cvi.2013.0310 es_ES
dc.description.references Xin J Ran BJ Ma XM Robot visual sliding mode servoing using SIFT features 2016 Chengdu, China es_ES
dc.description.references Zhao, Y. M., Lin, Y., Xi, F., Guo, S., & Ouyang, P. (2016). Switch-Based Sliding Mode Control for Position-Based Visual Servoing of Robotic Riveting System. Journal of Manufacturing Science and Engineering, 139(4). doi:10.1115/1.4034681 es_ES
dc.description.references Moosavian, S. A. A., & Papadopoulos, E. (2007). Modified transpose Jacobian control of robotic systems. Automatica, 43(7), 1226-1233. doi:10.1016/j.automatica.2006.12.029 es_ES
dc.description.references Sagara, S., & Taira, Y. (2008). Digital control of space robot manipulators with velocity type joint controller using transpose of generalized Jacobian matrix. Artificial Life and Robotics, 13(1), 355-358. doi:10.1007/s10015-008-0584-7 es_ES
dc.description.references Khalaji, A. K., & Moosavian, S. A. A. (2015). Modified transpose Jacobian control of a tractor-trailer wheeled robot. Journal of Mechanical Science and Technology, 29(9), 3961-3969. doi:10.1007/s12206-015-0841-3 es_ES
dc.description.references Utkin, V., Guldner, J., & Shi, J. (2017). Sliding Mode Control in Electro-Mechanical Systems. doi:10.1201/9781420065619 es_ES
dc.description.references Utkin, V. (2016). Discussion Aspects of High-Order Sliding Mode Control. IEEE Transactions on Automatic Control, 61(3), 829-833. doi:10.1109/tac.2015.2450571 es_ES
dc.description.references Romdhane, H., Dehri, K., & Nouri, A. S. (2016). Discrete second-order sliding mode control based on optimal sliding function vector for multivariable systems with input-output representation. International Journal of Robust and Nonlinear Control, 26(17), 3806-3830. doi:10.1002/rnc.3536 es_ES
dc.description.references Sharma, N. K., & Janardhanan, S. (2017). Optimal discrete higher-order sliding mode control of uncertain LTI systems with partial state information. International Journal of Robust and Nonlinear Control. doi:10.1002/rnc.3785 es_ES
dc.description.references LEVANT, A. (1993). Sliding order and sliding accuracy in sliding mode control. International Journal of Control, 58(6), 1247-1263. doi:10.1080/00207179308923053 es_ES
dc.description.references Levant, A. (2003). Higher-order sliding modes, differentiation and output-feedback control. International Journal of Control, 76(9-10), 924-941. doi:10.1080/0020717031000099029 es_ES
dc.description.references Bartolini, G., Ferrara, A., & Usai, E. (1998). Chattering avoidance by second-order sliding mode control. IEEE Transactions on Automatic Control, 43(2), 241-246. doi:10.1109/9.661074 es_ES
dc.description.references Siciliano, B., Sciavicco, L., Villani, L., & Oriolo, G. (2009). Robotics. Advanced Textbooks in Control and Signal Processing. doi:10.1007/978-1-84628-642-1 es_ES
dc.description.references Deo, A. S., & Walker, I. D. (1995). Overview of damped least-squares methods for inverse kinematics of robot manipulators. Journal of Intelligent & Robotic Systems, 14(1), 43-68. doi:10.1007/bf01254007 es_ES
dc.description.references WHEELER, G., SU, C.-Y., & STEPANENKO, Y. (1998). A Sliding Mode Controller with Improved Adaptation Laws for the Upper Bounds on the Norm of Uncertainties. Automatica, 34(12), 1657-1661. doi:10.1016/s0005-1098(98)80024-1 es_ES
dc.description.references Yu-Sheng Lu. (2009). Sliding-Mode Disturbance Observer With Switching-Gain Adaptation and Its Application to Optical Disk Drives. IEEE Transactions on Industrial Electronics, 56(9), 3743-3750. doi:10.1109/tie.2009.2025719 es_ES
dc.description.references Chen, X., Shen, W., Cao, Z., & Kapoor, A. (2014). A novel approach for state of charge estimation based on adaptive switching gain sliding mode observer in electric vehicles. Journal of Power Sources, 246, 667-678. doi:10.1016/j.jpowsour.2013.08.039 es_ES
dc.description.references Cong, B. L., Chen, Z., & Liu, X. D. (2012). On adaptive sliding mode control without switching gain overestimation. International Journal of Robust and Nonlinear Control, 24(3), 515-531. doi:10.1002/rnc.2902 es_ES
dc.description.references Taleb, M., Plestan, F., & Bououlid, B. (2014). An adaptive solution for robust control based on integral high-order sliding mode concept. International Journal of Robust and Nonlinear Control, 25(8), 1201-1213. doi:10.1002/rnc.3135 es_ES
dc.description.references Zhu, J., & Khayati, K. (2016). On a new adaptive sliding mode control for MIMO nonlinear systems with uncertainties of unknown bounds. International Journal of Robust and Nonlinear Control, 27(6), 942-962. doi:10.1002/rnc.3608 es_ES
dc.description.references Hafez AHA Cervera E Jawahar CV Hybrid visual servoing by boosting IBVS and PBVS 2008 Damascus, Syria es_ES
dc.description.references Kermorgant O Chaumette F Combining IBVS and PBVS to ensure the visibility constraint 2011 San Francisco, CA, USA es_ES
dc.description.references Corke, P. I., & Hutchinson, S. A. (2001). A new partitioned approach to image-based visual servo control. IEEE Transactions on Robotics and Automation, 17(4), 507-515. doi:10.1109/70.954764 es_ES
dc.description.references Yang, Z., & Shen, S. (2017). Monocular Visual–Inertial State Estimation With Online Initialization and Camera–IMU Extrinsic Calibration. IEEE Transactions on Automation Science and Engineering, 14(1), 39-51. doi:10.1109/tase.2016.2550621 es_ES
dc.description.references Chesi G Hashimoto K Static-eye against hand-eye visual servoing 2002 Las Vegas, NV, USA es_ES
dc.description.references Bourdis N Marraud D Sahbi H Camera pose estimation using visual servoing for aerial video change detection 2012 Munich, Germany es_ES
dc.description.references Shademan A Janabi-Sharifi F Sensitivity analysis of EKF and iterated EKF pose estimation for position-based visual servoing 2005 USA es_ES
dc.description.references Malis, E., Mezouar, Y., & Rives, P. (2010). Robustness of Image-Based Visual Servoing With a Calibrated Camera in the Presence of Uncertainties in the Three-Dimensional Structure. IEEE Transactions on Robotics, 26(1), 112-120. doi:10.1109/tro.2009.2033332 es_ES
dc.description.references Chen J Behal A Dawson D Dixon W Adaptive visual servoing in the presence of intrinsic calibration uncertainty 2003 USA es_ES
dc.description.references Mezouar Y Malis E Robustness of central catadioptric image-based visual servoing to uncertainties on 3D parameters 2004 Sendai, Japan es_ES
dc.description.references Marchand, E., Spindler, F., & Chaumette, F. (2005). ViSP for visual servoing: a generic software platform with a wide class of robot control skills. IEEE Robotics & Automation Magazine, 12(4), 40-52. doi:10.1109/mra.2005.1577023 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem