- -

Synthesis and Structure Determination of the Hierarchical Meso-Microporous Zeolite ITQ-43

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis and Structure Determination of the Hierarchical Meso-Microporous Zeolite ITQ-43

Mostrar el registro completo del ítem

Jiang, J.; Jorda Moret, JL.; Yu, J.; Baumes, LA.; Mugnaioli, E.; Díaz Cabañas, MJ.; Kolb, U.... (2011). Synthesis and Structure Determination of the Hierarchical Meso-Microporous Zeolite ITQ-43. Science. 333(6046):1131-1134. https://doi.org/10.1126/science.1208652

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140858

Ficheros en el ítem

Metadatos del ítem

Título: Synthesis and Structure Determination of the Hierarchical Meso-Microporous Zeolite ITQ-43
Autor: Jiang, Jiuxing Jorda Moret, Jose Luis Yu, Jihong Baumes, Laurent Allan Mugnaioli, Enrico Díaz Cabañas, Mª José Kolb, Ute Corma Canós, Avelino
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] The formation of mesopores in microporous zeolites is generally performed by postsynthesis acid, basic, and steam treatments. The hierarchical pore systems thus formed allow better adsorption, diffusion, and reactivity ...[+]
Derechos de uso: Cerrado
Fuente:
Science. (issn: 0036-8075 )
DOI: 10.1126/science.1208652
Editorial:
American Association for the Advancement of Science (AAAS)
Versión del editor: https://doi.org/10.1126/science.1208652
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//PLE2009-0054/ES/Nuevas Zeolitas para Procesos de Separación de Gases y Producción Sostenible de Productos Químicos/
info:eu-repo/grantAgreement/MICINN//MAT2009-14528-C02-01/ES/Sintesis, Caracterizacion Avanzada Y Empleo En Procesos Industriales De Nuevas Zeolitas Obtenidos Con Cationes Organicos No Convencionales Como Agentes Directores De Estructura/
info:eu-repo/grantAgreement/DFG//SFB 625/
info:eu-repo/grantAgreement/NKRDPC//2011CB808703/
info:eu-repo/grantAgreement/NKRDPC//2007CB936402/
Agradecimientos:
We thank the Spanish government (projects MAT2009-14528-C02-01, PLE2009-0054, and CONSOLIDER INGENIO 2010) and Generalitat Valenciana (Project Prometeo) for financial support, and the Deutsche Forschungsgemeinschaft SFB ...[+]
Tipo: Artículo

References

Corma, A. (2003). State of the art and future challenges of zeolites as catalysts. Journal of Catalysis, 216(1-2), 298-312. doi:10.1016/s0021-9517(02)00132-x

Davis, M. E. (2002). Ordered porous materials for emerging applications. Nature, 417(6891), 813-821. doi:10.1038/nature00785

Corma, A., Díaz-Cabañas, M. J., Jordá, J. L., Martínez, C., & Moliner, M. (2006). High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature, 443(7113), 842-845. doi:10.1038/nature05238 [+]
Corma, A. (2003). State of the art and future challenges of zeolites as catalysts. Journal of Catalysis, 216(1-2), 298-312. doi:10.1016/s0021-9517(02)00132-x

Davis, M. E. (2002). Ordered porous materials for emerging applications. Nature, 417(6891), 813-821. doi:10.1038/nature00785

Corma, A., Díaz-Cabañas, M. J., Jordá, J. L., Martínez, C., & Moliner, M. (2006). High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature, 443(7113), 842-845. doi:10.1038/nature05238

Jiang, J., Jorda, J. L., Diaz-Cabanas, M. J., Yu, J., & Corma, A. (2010). The Synthesis of an Extra-Large-Pore Zeolite with Double Three-Ring Building Units and a Low Framework Density. Angewandte Chemie International Edition, 49(29), 4986-4988. doi:10.1002/anie.201001506

Sun, J., Bonneau, C., Cantín, Á., Corma, A., Díaz-Cabañas, M. J., Moliner, M., … Zou, X. (2009). The ITQ-37 mesoporous chiral zeolite. Nature, 458(7242), 1154-1157. doi:10.1038/nature07957

Strohmaier, K. G., & Vaughan, D. E. W. (2003). Structure of the First Silicate Molecular Sieve with 18-Ring Pore Openings, ECR-34. Journal of the American Chemical Society, 125(51), 16035-16039. doi:10.1021/ja0371653

Freyhardt, C. C., Tsapatsis, M., Lobo, R. F., Balkus, K. J., & Davis, M. E. (1996). A high-silica zeolite with a 14-tetrahedral-atom pore opening. Nature, 381(6580), 295-298. doi:10.1038/381295a0

Burton, A., Elomari, S., Chen, C.-Y., Medrud, R. C., Chan, I. Y., Bull, L. M., … Vittoratos, E. S. (2003). SSZ-53 and SSZ-59: Two Novel Extra-Large Pore Zeolites. Chemistry - A European Journal, 9(23), 5737-5748. doi:10.1002/chem.200305238

Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592

Choi, M., Na, K., Kim, J., Sakamoto, Y., Terasaki, O., & Ryoo, R. (2009). Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 461(7261), 246-249. doi:10.1038/nature08288

Čejka, J., & Mintova, S. (2007). Perspectives of Micro/Mesoporous Composites in Catalysis. Catalysis Reviews, 49(4), 457-509. doi:10.1080/01614940701583240

Liu, Y., & Pinnavaia, T. J. (2002). Aluminosilicate mesostructures with improved acidity and hydrothermal stability. Journal of Materials Chemistry, 12(11), 3179-3190. doi:10.1039/b204094h

Kolb, U., Gorelik, T., Kübel, C., Otten, M. T., & Hubert, D. (2007). Towards automated diffraction tomography: Part I—Data acquisition. Ultramicroscopy, 107(6-7), 507-513. doi:10.1016/j.ultramic.2006.10.007

Kolb, U., Gorelik, T., & Otten, M. T. (2008). Towards automated diffraction tomography. Part II—Cell parameter determination. Ultramicroscopy, 108(8), 763-772. doi:10.1016/j.ultramic.2007.12.002

Kisielowski, C., Freitag, B., Bischoff, M., van Lin, H., Lazar, S., Knippels, G., … Dahmen, U. (2008). Detection of Single Atoms and Buried Defects in Three Dimensions by Aberration-Corrected Electron Microscope with 0.5-Å Information Limit. Microscopy and Microanalysis, 14(5), 469-477. doi:10.1017/s1431927608080902

Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., … Spagna, R. (2007). IL MILIONE: a suite of computer programs for crystal structure solution of proteins. Journal of Applied Crystallography, 40(3), 609-613. doi:10.1107/s0021889807010941

Sheldrick, G. M. (2007). A short history ofSHELX. Acta Crystallographica Section A Foundations of Crystallography, 64(1), 112-122. doi:10.1107/s0108767307043930

Baumes, L. A., Kruger, F., Jimenez, S., Collet, P., & Corma, A. (2011). Boosting theoretical zeolitic framework generation for the determination of new materials structures using GPU programming. Physical Chemistry Chemical Physics, 13(10), 4674. doi:10.1039/c0cp02833a

Estermann, M., McCusker, L. B., Baerlocher, C., Merrouche, A., & Kessler, H. (1991). A synthetic gallophosphate molecular sieve with a 20-tetrahedral-atom pore opening. Nature, 352(6333), 320-323. doi:10.1038/352320a0

Dodin, M., Paillaud, J.-L., Lorgouilloux, Y., Caullet, P., Elkaïm, E., & Bats, N. (2010). A Zeolitic Material with a Three-Dimensional Pore System Formed by Straight 12- and 10-Ring Channels Synthesized with an Imidazolium Derivative as Structure-Directing Agent. Journal of the American Chemical Society, 132(30), 10221-10223. doi:10.1021/ja103648k

Sastre, G., Vidal-Moya, J. A., Blasco, T., Rius, J., Jordá, J. L., Navarro, M. T., … Corma, A. (2002). Preferential Location of Ge Atoms in Polymorph C of Beta Zeolite (ITQ-17) and Their Structure-Directing Effect: A Computational, XRD, and NMR Spectroscopic Study. Angewandte Chemie International Edition, 41(24), 4722-4726. doi:10.1002/anie.200290028

Corma, A., Rey, F., Valencia, S., Jordá, J. L., & Rius, J. (2003). A zeolite with interconnected 8-, 10- and 12-ring pores and its unique catalytic selectivity. Nature Materials, 2(7), 493-497. doi:10.1038/nmat921

Corma, A., Diaz-Cabanas, M. J., Jorda, J. L., Rey, F., Sastre, G., & Strohmaier, K. G. (2008). A Zeolitic Structure (ITQ-34) with Connected 9- and 10-Ring Channels Obtained with Phosphonium Cations as Structure Directing Agents. Journal of the American Chemical Society, 130(49), 16482-16483. doi:10.1021/ja806903c

Cantín, Á., Corma, A., Díaz-Cabañas, M. J., Jordá, J. L., Moliner, M., & Rey, F. (2006). Synthesis and Characterization of the All-Silica Pure Polymorph C and an Enriched Polymorph B Intergrowth of Zeolite Beta. Angewandte Chemie International Edition, 45(47), 8013-8015. doi:10.1002/anie.200603027

Gao, F., Jaber, M., Bozhilov, K., Vicente, A., Fernandez, C., & Valtchev, V. (2009). Framework Stabilization of Ge-Rich Zeolites via Postsynthesis Alumination. Journal of the American Chemical Society, 131(45), 16580-16586. doi:10.1021/ja904458y

Baerlocher, C., Gramm, F., Massuger, L., McCusker, L. B., He, Z., Hovmoller, S., & Zou, X. (2007). Structure of the Polycrystalline Zeolite Catalyst IM-5 Solved by Enhanced Charge Flipping. Science, 315(5815), 1113-1116. doi:10.1126/science.1137920

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem