- -

Comparing performance indicators to characterize the water supply to the demands of the Guadiana River basin (Spain)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparing performance indicators to characterize the water supply to the demands of the Guadiana River basin (Spain)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Palop-Donat, Carla es_ES
dc.contributor.author Paredes Arquiola, Javier es_ES
dc.contributor.author Solera Solera, Abel es_ES
dc.contributor.author Andreu Álvarez, Joaquín es_ES
dc.date.accessioned 2020-04-17T12:48:55Z
dc.date.available 2020-04-17T12:48:55Z
dc.date.issued 2020-03-31 es_ES
dc.identifier.issn 0262-6667 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140863
dc.description Añadir el siguiente texto en el campo descripción: "This is an Accepted Manuscript of an article published in Hydrological Sciences Journal on 31-Mar-2020, available online: http://www.tandfonline.com/10.1080/02626667.2020.1734812." es_ES
dc.description.abstract [EN] Water indicators and indices are useful tools to assess river basin performance, that is, to measure whether the basin operates satisfactorily under a wide range of possible future demands and hydrological conditions. Spanish regulations assess the performance of water demands by using reliability indicators (RIs), established by law in 2008. This article raises the possibility of updating RIs by comparing them with sustainability indicators (SIs). SIs are widely used for the assessment of river basin performance and several policy scenarios. We applied a water allocation model to the Guadiana River basin in Spain to compare indicators under three scenarios. The study was framed within the science of socio-hydrology, combining the physical environment of a water system with its influence on social aspects. SIs gave better results than RIs when comparing future scenarios. We also propose the introduction of a vulnerability indicator into Spanish regulations. es_ES
dc.description.sponsorship The authors thank the Spanish Research Agency (MINECO) for the financial support to the ERAS project [CTM2016-77804-P], including EU-FEDER funds. Additionally, we value the support provided by the European Community in financing the project IMPREX [H2020-WATER-2014-2015, 641811]. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Hydrological Sciences Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Sustainability indicators es_ES
dc.subject Reliability indicators es_ES
dc.subject Water allocation model es_ES
dc.subject Climate change es_ES
dc.subject Guadiana River basin es_ES
dc.subject Socio-hydrology es_ES
dc.subject Reliability es_ES
dc.subject Resilience es_ES
dc.subject Vulnerability es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Comparing performance indicators to characterize the water supply to the demands of the Guadiana River basin (Spain) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/02626667.2020.1734812 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/641811/EU/IMproving PRedictions and management of hydrological EXtremes/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTM2016-77804-P/ES/ESTIMACION DEL RIESGO AMBIENTAL FRENTE A LAS SEQUIAS Y EL CAMBIO CLIMATICO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.description.bibliographicCitation Palop-Donat, C.; Paredes Arquiola, J.; Solera Solera, A.; Andreu Álvarez, J. (2020). Comparing performance indicators to characterize the water supply to the demands of the Guadiana River basin (Spain). Hydrological Sciences Journal. 1-15. https://doi.org/10.1080/02626667.2020.1734812 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/02626667.2020.1734812 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\406770 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Aguilera, H., Castaño, S., Moreno, L., Jiménez-Hernández, M. E., & de la Losa, A. (2013). Model of hydrological behaviour of the anthropized semiarid wetland of Las Tablas de Daimiel National Park (Spain) based on surface water–groundwater interactions. Hydrogeology Journal, 21(3), 623-641. doi:10.1007/s10040-012-0950-3 es_ES
dc.description.references Alarcón, J., Garrido, A., & Juana, L. (2016). Modernization of irrigation systems in Spain: review and analysis for decision making. International Journal of Water Resources Development, 32(3), 442-458. doi:10.1080/07900627.2015.1123142 es_ES
dc.description.references Andreu, J., Capilla, J., & Sanchís, E. (1996). AQUATOOL, a generalized decision-support system for water-resources planning and operational management. Journal of Hydrology, 177(3-4), 269-291. doi:10.1016/0022-1694(95)02963-x es_ES
dc.description.references Ashofteh, P.-S., Rajaee, T., & Golfam, P. (2017). Assessment of Water Resources Development Projects under Conditions of Climate Change Using Efficiency Indexes (EIs). Water Resources Management, 31(12), 3723-3744. doi:10.1007/s11269-017-1701-y es_ES
dc.description.references BOE (Boletín Oficial del Estado), 2008. ORDEN ARM/2656/2008, de 10 de septiembre, por la que se aprueba la instrucción de planificación hidrológica. BOE. 229 de 22 de septiembre 2008, 38472–38582. https://www.boe.es/buscar/doc.php?id=BOE-A-2008-15340. es_ES
dc.description.references BOE (Boletín Oficial del Estado), 2010. Protocolo de Revision del Convenio Sobre Cooperación Para La Protección y el Aprovechamiento Sostenible de Las Aguas de las Cuencas Hidrográficas Hispano-Portuguesas y el Protocolo adicional. Albufeira, Portugal, 30 de Noviembre de 1998. BOE. 14, de 16 de enero de 2010, 3425–3432 es_ES
dc.description.references CEDEX (Centro de Estudios y Experimentación de Obras Públicas), 2011. Evaluación del Impacto del Cambio Climático en los recursos hídricos en régimen natural. Encomienda de gestión de la Dirección General del Agua (MARM) para el estudio del cambio climático en los recursos hídricos y las masas de agua. Madrid, Spain: Centro de Publicaciones, Secretaría General Técnica del Ministerio de Fomento. es_ES
dc.description.references Collet, L., Ruelland, D., Estupina, V. B., Dezetter, A., & Servat, E. (2015). Water supply sustainability and adaptation strategies under anthropogenic and climatic changes of a meso-scale Mediterranean catchment. Science of The Total Environment, 536, 589-602. doi:10.1016/j.scitotenv.2015.07.093 es_ES
dc.description.references Official Journal of the European Communities. (1984). Analytical Proceedings, 21(6), 196. doi:10.1039/ap9842100196 es_ES
dc.description.references Estrada Lorenzo, F., 1993. La garantía en los sistemas de explotación de recursos hidráulicos. Thesis (PhD). Universidad Politécnica de Madrid. es_ES
dc.description.references García-Santos, G., de Brito, M. M., Höllermann, B., Taft, L., Almoradie, A., & Evers, M. (2018). Methodology to explore emergent behaviours of the interactions between water resources and ecosystem under a pluralistic approach. Proceedings of the International Association of Hydrological Sciences, 379, 83-87. doi:10.5194/piahs-379-83-2018 es_ES
dc.description.references Gheisi, A., Forsyth, M., & Naser, G. (2016). Water Distribution Systems Reliability: A Review of Research Literature. Journal of Water Resources Planning and Management, 142(11), 04016047. doi:10.1061/(asce)wr.1943-5452.0000690 es_ES
dc.description.references Gohari, A., Mirchi, A., & Madani, K. (2017). System Dynamics Evaluation of Climate Change Adaptation Strategies for Water Resources Management in Central Iran. Water Resources Management, 31(5), 1413-1434. doi:10.1007/s11269-017-1575-z es_ES
dc.description.references Goharian, E., Burian, S. J., & Karamouz, M. (2018). Using Joint Probability Distribution of Reliability and Vulnerability to Develop a Water System Performance Index. Journal of Water Resources Planning and Management, 144(2), 04017081. doi:10.1061/(asce)wr.1943-5452.0000869 es_ES
dc.description.references Hashimoto, T., Stedinger, J. R., & Loucks, D. P. (1982). Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resources Research, 18(1), 14-20. doi:10.1029/wr018i001p00014 es_ES
dc.description.references Hernández-Bedolla, J., Solera, A., Paredes-Arquiola, J., Pedro-Monzonís, M., Andreu, J., & Sánchez-Quispe, S. (2017). The Assessment of Sustainability Indexes and Climate Change Impacts on Integrated Water Resource Management. Water, 9(3), 213. doi:10.3390/w9030213 es_ES
dc.description.references (2018). Water and Environment Journal, 32(1). doi:10.1111/wej.2018.32.issue-1 es_ES
dc.description.references Lall, U., & Miller, C. W. (1988). An optimization model for screening multipurpose reservoir systems. Water Resources Research, 24(7), 953-968. doi:10.1029/wr024i007p00953 es_ES
dc.description.references LOUCKS, D. P. (1997). Quantifying trends in system sustainability. Hydrological Sciences Journal, 42(4), 513-530. doi:10.1080/02626669709492051 es_ES
dc.description.references Loucks, D. P., & van Beek, E. (2017). Water Resource Systems Planning and Management. doi:10.1007/978-3-319-44234-1 es_ES
dc.description.references Milano, M., Reynard, E., Köplin, N., & Weingartner, R. (2015). Climatic and anthropogenic changes in Western Switzerland: Impacts on water stress. Science of The Total Environment, 536, 12-24. doi:10.1016/j.scitotenv.2015.07.049 es_ES
dc.description.references Ortega-Gómez, T., Pérez-Martín, M. A., & Estrela, T. (2018). Improvement of the drought indicators system in the Júcar River Basin, Spain. Science of The Total Environment, 610-611, 276-290. doi:10.1016/j.scitotenv.2017.07.250 es_ES
dc.description.references Pedro Monzonís, M., 2014. Análisis de metodologías de balances hídricos en sistemas complejos en el contexto europeo de la Planificación hidrológica. Aplicación a la cuenca del Júcar. Thesis (MS). Universitat Politècnica de València. es_ES
dc.description.references Pedro-Monzonís, M., 2016. Assessment of water exploitation indexes based on water accounting. Thesis (PhD). Universitat Politècnica de València. es_ES
dc.description.references Pedro-Monzonís, M., Solera, A., Ferrer, J., Estrela, T., & Paredes-Arquiola, J. (2015). A review of water scarcity and drought indexes in water resources planning and management. Journal of Hydrology, 527, 482-493. doi:10.1016/j.jhydrol.2015.05.003 es_ES
dc.description.references Ruiz Pulpón, Á. R. (2006). Regadíos y gestión sostenible de los recursos hídricos en la cuenca del Guadiana: propuesta territorial previa a la toma de decisiones. Investigaciones Geográficas, (40), 183. doi:10.14198/ingeo2006.40.09 es_ES
dc.description.references Sandoval-Solis, S., McKinney, D. C., & Loucks, D. P. (2011). Sustainability Index for Water Resources Planning and Management. Journal of Water Resources Planning and Management, 137(5), 381-390. doi:10.1061/(asce)wr.1943-5452.0000134 es_ES
dc.description.references Sarang, A., Vahedi, A., & Shamsai, A. (2007). How to Quantify Sustainable Development: A Risk-Based Approach to Water Quality Management. Environmental Management, 41(2), 200-220. doi:10.1007/s00267-007-9047-5 es_ES
dc.description.references Shilling, F. and Shilling, F., 2014. California Water Sustainability Indicators Framework : Assessment at State and Region Scales Final Report California Water Sustainability Indicators Framework : Assessment at State and Region Scale. California, USA: California Department of Water Resources. es_ES
dc.description.references Sivapalan, M. (2018). From engineering hydrology to Earth system science: milestones in the transformation of hydrologic science. Hydrology and Earth System Sciences, 22(3), 1665-1693. doi:10.5194/hess-22-1665-2018 es_ES
dc.description.references Sivapalan, M., Konar, M., Srinivasan, V., Chhatre, A., Wutich, A., Scott, C. A., … Rodríguez‐Iturbe, I. (2014). Socio‐hydrology: Use‐inspired water sustainability science for the Anthropocene. Earth’s Future, 2(4), 225-230. doi:10.1002/2013ef000164 es_ES
dc.description.references Sivapalan, M., Savenije, H. H. G., & Blöschl, G. (2012). Socio-hydrology: A new science of people and water. Hydrological Processes, 26(8), 1270-1276. doi:10.1002/hyp.8426 es_ES
dc.description.references Srdjevic, Z., & Srdjevic, B. (2017). An Extension of the Sustainability Index Definition in Water Resources Planning and Management. Water Resources Management, 31(5), 1695-1712. doi:10.1007/s11269-017-1609-6 es_ES
dc.description.references Troy, T. J., Pavao-Zuckerman, M., & Evans, T. P. (2015). Debates-Perspectives on socio-hydrology: Socio-hydrologic modeling: Tradeoffs, hypothesis testing, and validation. Water Resources Research, 51(6), 4806-4814. doi:10.1002/2015wr017046 es_ES
dc.description.references Xu, L., Gober, P., Wheater, H. S., & Kajikawa, Y. (2018). Reframing socio-hydrological research to include a social science perspective. Journal of Hydrology, 563, 76-83. doi:10.1016/j.jhydrol.2018.05.061 es_ES
dc.description.references Yustres, Á., Navarro, V., Asensio, L., Candel, M., & García, B. (2013). Groundwater resources in the Upper Guadiana Basin (Spain): a regional modelling analysis. Hydrogeology Journal, 21(5), 1129-1146. doi:10.1007/s10040-013-0987-y es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem