Mostrar el registro sencillo del ítem
dc.contributor.author | Palop-Donat, Carla | es_ES |
dc.contributor.author | Paredes Arquiola, Javier | es_ES |
dc.contributor.author | Solera Solera, Abel | es_ES |
dc.contributor.author | Andreu Álvarez, Joaquín | es_ES |
dc.date.accessioned | 2020-04-17T12:48:55Z | |
dc.date.available | 2020-04-17T12:48:55Z | |
dc.date.issued | 2020-03-31 | es_ES |
dc.identifier.issn | 0262-6667 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/140863 | |
dc.description | Añadir el siguiente texto en el campo descripción: "This is an Accepted Manuscript of an article published in Hydrological Sciences Journal on 31-Mar-2020, available online: http://www.tandfonline.com/10.1080/02626667.2020.1734812." | es_ES |
dc.description.abstract | [EN] Water indicators and indices are useful tools to assess river basin performance, that is, to measure whether the basin operates satisfactorily under a wide range of possible future demands and hydrological conditions. Spanish regulations assess the performance of water demands by using reliability indicators (RIs), established by law in 2008. This article raises the possibility of updating RIs by comparing them with sustainability indicators (SIs). SIs are widely used for the assessment of river basin performance and several policy scenarios. We applied a water allocation model to the Guadiana River basin in Spain to compare indicators under three scenarios. The study was framed within the science of socio-hydrology, combining the physical environment of a water system with its influence on social aspects. SIs gave better results than RIs when comparing future scenarios. We also propose the introduction of a vulnerability indicator into Spanish regulations. | es_ES |
dc.description.sponsorship | The authors thank the Spanish Research Agency (MINECO) for the financial support to the ERAS project [CTM2016-77804-P], including EU-FEDER funds. Additionally, we value the support provided by the European Community in financing the project IMPREX [H2020-WATER-2014-2015, 641811]. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Hydrological Sciences Journal | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Sustainability indicators | es_ES |
dc.subject | Reliability indicators | es_ES |
dc.subject | Water allocation model | es_ES |
dc.subject | Climate change | es_ES |
dc.subject | Guadiana River basin | es_ES |
dc.subject | Socio-hydrology | es_ES |
dc.subject | Reliability | es_ES |
dc.subject | Resilience | es_ES |
dc.subject | Vulnerability | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | Comparing performance indicators to characterize the water supply to the demands of the Guadiana River basin (Spain) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/02626667.2020.1734812 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/641811/EU/IMproving PRedictions and management of hydrological EXtremes/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTM2016-77804-P/ES/ESTIMACION DEL RIESGO AMBIENTAL FRENTE A LAS SEQUIAS Y EL CAMBIO CLIMATICO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Palop-Donat, C.; Paredes Arquiola, J.; Solera Solera, A.; Andreu Álvarez, J. (2020). Comparing performance indicators to characterize the water supply to the demands of the Guadiana River basin (Spain). Hydrological Sciences Journal. 1-15. https://doi.org/10.1080/02626667.2020.1734812 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/02626667.2020.1734812 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\406770 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Aguilera, H., Castaño, S., Moreno, L., Jiménez-Hernández, M. E., & de la Losa, A. (2013). Model of hydrological behaviour of the anthropized semiarid wetland of Las Tablas de Daimiel National Park (Spain) based on surface water–groundwater interactions. Hydrogeology Journal, 21(3), 623-641. doi:10.1007/s10040-012-0950-3 | es_ES |
dc.description.references | Alarcón, J., Garrido, A., & Juana, L. (2016). Modernization of irrigation systems in Spain: review and analysis for decision making. International Journal of Water Resources Development, 32(3), 442-458. doi:10.1080/07900627.2015.1123142 | es_ES |
dc.description.references | Andreu, J., Capilla, J., & Sanchís, E. (1996). AQUATOOL, a generalized decision-support system for water-resources planning and operational management. Journal of Hydrology, 177(3-4), 269-291. doi:10.1016/0022-1694(95)02963-x | es_ES |
dc.description.references | Ashofteh, P.-S., Rajaee, T., & Golfam, P. (2017). Assessment of Water Resources Development Projects under Conditions of Climate Change Using Efficiency Indexes (EIs). Water Resources Management, 31(12), 3723-3744. doi:10.1007/s11269-017-1701-y | es_ES |
dc.description.references | BOE (Boletín Oficial del Estado), 2008. ORDEN ARM/2656/2008, de 10 de septiembre, por la que se aprueba la instrucción de planificación hidrológica. BOE. 229 de 22 de septiembre 2008, 38472–38582. https://www.boe.es/buscar/doc.php?id=BOE-A-2008-15340. | es_ES |
dc.description.references | BOE (Boletín Oficial del Estado), 2010. Protocolo de Revision del Convenio Sobre Cooperación Para La Protección y el Aprovechamiento Sostenible de Las Aguas de las Cuencas Hidrográficas Hispano-Portuguesas y el Protocolo adicional. Albufeira, Portugal, 30 de Noviembre de 1998. BOE. 14, de 16 de enero de 2010, 3425–3432 | es_ES |
dc.description.references | CEDEX (Centro de Estudios y Experimentación de Obras Públicas), 2011. Evaluación del Impacto del Cambio Climático en los recursos hídricos en régimen natural. Encomienda de gestión de la Dirección General del Agua (MARM) para el estudio del cambio climático en los recursos hídricos y las masas de agua. Madrid, Spain: Centro de Publicaciones, Secretaría General Técnica del Ministerio de Fomento. | es_ES |
dc.description.references | Collet, L., Ruelland, D., Estupina, V. B., Dezetter, A., & Servat, E. (2015). Water supply sustainability and adaptation strategies under anthropogenic and climatic changes of a meso-scale Mediterranean catchment. Science of The Total Environment, 536, 589-602. doi:10.1016/j.scitotenv.2015.07.093 | es_ES |
dc.description.references | Official Journal of the European Communities. (1984). Analytical Proceedings, 21(6), 196. doi:10.1039/ap9842100196 | es_ES |
dc.description.references | Estrada Lorenzo, F., 1993. La garantía en los sistemas de explotación de recursos hidráulicos. Thesis (PhD). Universidad Politécnica de Madrid. | es_ES |
dc.description.references | García-Santos, G., de Brito, M. M., Höllermann, B., Taft, L., Almoradie, A., & Evers, M. (2018). Methodology to explore emergent behaviours of the interactions between water resources and ecosystem under a pluralistic approach. Proceedings of the International Association of Hydrological Sciences, 379, 83-87. doi:10.5194/piahs-379-83-2018 | es_ES |
dc.description.references | Gheisi, A., Forsyth, M., & Naser, G. (2016). Water Distribution Systems Reliability: A Review of Research Literature. Journal of Water Resources Planning and Management, 142(11), 04016047. doi:10.1061/(asce)wr.1943-5452.0000690 | es_ES |
dc.description.references | Gohari, A., Mirchi, A., & Madani, K. (2017). System Dynamics Evaluation of Climate Change Adaptation Strategies for Water Resources Management in Central Iran. Water Resources Management, 31(5), 1413-1434. doi:10.1007/s11269-017-1575-z | es_ES |
dc.description.references | Goharian, E., Burian, S. J., & Karamouz, M. (2018). Using Joint Probability Distribution of Reliability and Vulnerability to Develop a Water System Performance Index. Journal of Water Resources Planning and Management, 144(2), 04017081. doi:10.1061/(asce)wr.1943-5452.0000869 | es_ES |
dc.description.references | Hashimoto, T., Stedinger, J. R., & Loucks, D. P. (1982). Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resources Research, 18(1), 14-20. doi:10.1029/wr018i001p00014 | es_ES |
dc.description.references | Hernández-Bedolla, J., Solera, A., Paredes-Arquiola, J., Pedro-Monzonís, M., Andreu, J., & Sánchez-Quispe, S. (2017). The Assessment of Sustainability Indexes and Climate Change Impacts on Integrated Water Resource Management. Water, 9(3), 213. doi:10.3390/w9030213 | es_ES |
dc.description.references | (2018). Water and Environment Journal, 32(1). doi:10.1111/wej.2018.32.issue-1 | es_ES |
dc.description.references | Lall, U., & Miller, C. W. (1988). An optimization model for screening multipurpose reservoir systems. Water Resources Research, 24(7), 953-968. doi:10.1029/wr024i007p00953 | es_ES |
dc.description.references | LOUCKS, D. P. (1997). Quantifying trends in system sustainability. Hydrological Sciences Journal, 42(4), 513-530. doi:10.1080/02626669709492051 | es_ES |
dc.description.references | Loucks, D. P., & van Beek, E. (2017). Water Resource Systems Planning and Management. doi:10.1007/978-3-319-44234-1 | es_ES |
dc.description.references | Milano, M., Reynard, E., Köplin, N., & Weingartner, R. (2015). Climatic and anthropogenic changes in Western Switzerland: Impacts on water stress. Science of The Total Environment, 536, 12-24. doi:10.1016/j.scitotenv.2015.07.049 | es_ES |
dc.description.references | Ortega-Gómez, T., Pérez-Martín, M. A., & Estrela, T. (2018). Improvement of the drought indicators system in the Júcar River Basin, Spain. Science of The Total Environment, 610-611, 276-290. doi:10.1016/j.scitotenv.2017.07.250 | es_ES |
dc.description.references | Pedro Monzonís, M., 2014. Análisis de metodologías de balances hídricos en sistemas complejos en el contexto europeo de la Planificación hidrológica. Aplicación a la cuenca del Júcar. Thesis (MS). Universitat Politècnica de València. | es_ES |
dc.description.references | Pedro-Monzonís, M., 2016. Assessment of water exploitation indexes based on water accounting. Thesis (PhD). Universitat Politècnica de València. | es_ES |
dc.description.references | Pedro-Monzonís, M., Solera, A., Ferrer, J., Estrela, T., & Paredes-Arquiola, J. (2015). A review of water scarcity and drought indexes in water resources planning and management. Journal of Hydrology, 527, 482-493. doi:10.1016/j.jhydrol.2015.05.003 | es_ES |
dc.description.references | Ruiz Pulpón, Á. R. (2006). Regadíos y gestión sostenible de los recursos hídricos en la cuenca del Guadiana: propuesta territorial previa a la toma de decisiones. Investigaciones Geográficas, (40), 183. doi:10.14198/ingeo2006.40.09 | es_ES |
dc.description.references | Sandoval-Solis, S., McKinney, D. C., & Loucks, D. P. (2011). Sustainability Index for Water Resources Planning and Management. Journal of Water Resources Planning and Management, 137(5), 381-390. doi:10.1061/(asce)wr.1943-5452.0000134 | es_ES |
dc.description.references | Sarang, A., Vahedi, A., & Shamsai, A. (2007). How to Quantify Sustainable Development: A Risk-Based Approach to Water Quality Management. Environmental Management, 41(2), 200-220. doi:10.1007/s00267-007-9047-5 | es_ES |
dc.description.references | Shilling, F. and Shilling, F., 2014. California Water Sustainability Indicators Framework : Assessment at State and Region Scales Final Report California Water Sustainability Indicators Framework : Assessment at State and Region Scale. California, USA: California Department of Water Resources. | es_ES |
dc.description.references | Sivapalan, M. (2018). From engineering hydrology to Earth system science: milestones in the transformation of hydrologic science. Hydrology and Earth System Sciences, 22(3), 1665-1693. doi:10.5194/hess-22-1665-2018 | es_ES |
dc.description.references | Sivapalan, M., Konar, M., Srinivasan, V., Chhatre, A., Wutich, A., Scott, C. A., … Rodríguez‐Iturbe, I. (2014). Socio‐hydrology: Use‐inspired water sustainability science for the Anthropocene. Earth’s Future, 2(4), 225-230. doi:10.1002/2013ef000164 | es_ES |
dc.description.references | Sivapalan, M., Savenije, H. H. G., & Blöschl, G. (2012). Socio-hydrology: A new science of people and water. Hydrological Processes, 26(8), 1270-1276. doi:10.1002/hyp.8426 | es_ES |
dc.description.references | Srdjevic, Z., & Srdjevic, B. (2017). An Extension of the Sustainability Index Definition in Water Resources Planning and Management. Water Resources Management, 31(5), 1695-1712. doi:10.1007/s11269-017-1609-6 | es_ES |
dc.description.references | Troy, T. J., Pavao-Zuckerman, M., & Evans, T. P. (2015). Debates-Perspectives on socio-hydrology: Socio-hydrologic modeling: Tradeoffs, hypothesis testing, and validation. Water Resources Research, 51(6), 4806-4814. doi:10.1002/2015wr017046 | es_ES |
dc.description.references | Xu, L., Gober, P., Wheater, H. S., & Kajikawa, Y. (2018). Reframing socio-hydrological research to include a social science perspective. Journal of Hydrology, 563, 76-83. doi:10.1016/j.jhydrol.2018.05.061 | es_ES |
dc.description.references | Yustres, Á., Navarro, V., Asensio, L., Candel, M., & García, B. (2013). Groundwater resources in the Upper Guadiana Basin (Spain): a regional modelling analysis. Hydrogeology Journal, 21(5), 1129-1146. doi:10.1007/s10040-013-0987-y | es_ES |