- -

Differentiation between acute and chronic myocardial infarction by means of texture analysis of late gadolinium enhancement and cine cardiac magnetic resonance imaging

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Differentiation between acute and chronic myocardial infarction by means of texture analysis of late gadolinium enhancement and cine cardiac magnetic resonance imaging

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Larroza, A es_ES
dc.contributor.author Materka, A es_ES
dc.contributor.author López-Lereu, MP es_ES
dc.contributor.author Monmeneu-Menadas, JV es_ES
dc.contributor.author Bodi, V es_ES
dc.contributor.author Moratal, D es_ES
dc.date.accessioned 2020-04-17T12:49:10Z
dc.date.available 2020-04-17T12:49:10Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0720-048X es_ES
dc.identifier.uri http://hdl.handle.net/10251/140871
dc.description.abstract [EN] The purpose of this study was to differentiate acute from chronic myocardial infarction using machine learning techniques and texture features extracted from cardiac magnetic resonance imaging (MRI). The study group comprised 22 cases with acute myocardial infarction (AMI) and 22 cases with chronic myocardial infarction (CMI). Cine and late gadolinium enhancement (LGE) MRI were analyzed independently to differentiate AMI from CMI. A total of 279 texture features were extracted from predefined regions of interest (ROIs): the infarcted area on LGE MRI, and the entire myocardium on cine MRI. Classification performance was evaluated by a nested cross-validation approach combining a feature selection technique with three predictive models: random forest, support vector machine (SVM) with Gaussian Kernel, and SVM with polynomial kernel. The polynomial SVM yielded the best classification performance. Receiver operating characteristic curves provided area-under-thecurve (AUC) (mean +/- standard deviation) of 0.86 +/- 0.06 on LGE MRI using 72 features; AMI sensitivity = 0.81 +/- 0.08 and specificity = 0.84 +/- 0.09. On cine MRI, AUC = 0.82 +/- 0.06 using 75 features; AMI sensitivity = 0.79 +/- 0.10 and specificity = 0.80 +/- 0.10. We concluded that texture analysis can be used for differentiation of AMI from CMI on cardiac LGE MRI, and also on standard cine sequences in which the infarction is visually imperceptible in most cases. es_ES
dc.description.sponsorship This work was supported in part by the Spanish Ministerio de Economia y Competitividad (MINECO) and FEDER funds under grant BFU2015-64380-C2-2-R, by Instituto de Salud Carlos III and FEDER funds under grants FIS PI14/00271 and PIE15/00013 and by the Generalitat Valenciana under grant PROMETEO/2013/007. The first author, Andres Larroza, was supported by grant FPU12/01140 from the Spanish Ministerio de Educacion, Cultura y Deporte (MECD). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof European Journal of Radiology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cardiac MRI es_ES
dc.subject Classification Myocardial infarction es_ES
dc.subject Texture analysis es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Differentiation between acute and chronic myocardial infarction by means of texture analysis of late gadolinium enhancement and cine cardiac magnetic resonance imaging es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.ejrad.2017.04.024 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//PI14%2F00271/ES/Fibrosis miocárdica tras un infarto de miocardio. Estudio traslacional para la innovación diagnóstica con resonancia magnética y para el entendimiento de los mecanismos reguladores/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//PIE15%2F00013/ES/A multidisciplinary project to advance in basic mechanisms, diagnosis, prediction, and prevention of cardiac damage in reperfused acute myocardial infarction/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2013%2F007/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU12%2F01140/ES/FPU12%2F01140/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2015-64380-C2-2-R/ES/ANALISIS DE TEXTURAS EN IMAGEN CEREBRAL MULTIMODAL POR RESONANCIA MAGNETICA PARA UNA DETECCION TEMPRANA DE ALTERACIONES EN LA RED Y BIOMARCADORES DE ENFERMEDAD/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Larroza, A.; Materka, A.; López-Lereu, M.; Monmeneu-Menadas, J.; Bodi, V.; Moratal, D. (2017). Differentiation between acute and chronic myocardial infarction by means of texture analysis of late gadolinium enhancement and cine cardiac magnetic resonance imaging. European Journal of Radiology. 92:78-83. https://doi.org/10.1016/j.ejrad.2017.04.024 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.ejrad.2017.04.024 es_ES
dc.description.upvformatpinicio 78 es_ES
dc.description.upvformatpfin 83 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 92 es_ES
dc.relation.pasarela S\353066 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem