- -

OPTICAL CONSTANTS AND BAND STRENGTHS OF CH4:C2H6 ICES IN THE NEAR- AND MID-INFRARED

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

OPTICAL CONSTANTS AND BAND STRENGTHS OF CH4:C2H6 ICES IN THE NEAR- AND MID-INFRARED

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Molpeceres, German es_ES
dc.contributor.author Satorre, M. Á. es_ES
dc.contributor.author Ortigoso, Juan es_ES
dc.contributor.author Millán Verdú, Carlos es_ES
dc.contributor.author Escribano, Rafael es_ES
dc.contributor.author Mate, Belen es_ES
dc.date.accessioned 2020-04-17T12:49:22Z
dc.date.available 2020-04-17T12:49:22Z
dc.date.issued 2016 es_ES
dc.identifier.issn 0004-637X es_ES
dc.identifier.uri http://hdl.handle.net/10251/140880
dc.description.abstract [EN] We present a spectroscopic study of methane-ethane ice mixtures. We have grown CH4:C2H6 mixtures with ratios 3:1, 1:1, and 1:3 at 18 and 30 K, plus pure methane and ethane ices, and have studied them in the near-infrared (NIR) and mid-infrared (MIR) ranges. We have determined densities of all species mentioned above. For amorphous ethane grown at 18 and 30 K we have obtained a density of 0.41 and 0.54 g cm(-3), respectively, lower than a previous measurement of the density of the crystalline species, 0.719 g cm(-3). As far as we know this is the first determination of the density of amorphous ethane ice. We have measured band shifts of the main NIR methane and ethane features in the mixtures with respect to the corresponding values in the pure ices. We have estimated band strengths of these bands in the NIR and MIR ranges. In general, intensity decay in methane modes was detected in the mixtures, whereas for ethane no clear tendency was observed. Optical constants of the mixtures at 30 and 18 K have also been evaluated. These values can be used to trace the presence of these species in the surface of trans-Neptunian objects. Furthermore, we have carried out a theoretical calculation of these ice mixtures. Simulation cells for the amorphous solids have been constructed using a Metropolis Monte Carlo procedure. Relaxation of the cells and prediction of infrared spectra have been carried out at density functional theory level. es_ES
dc.description.sponsorship Funds have been provided for this research from the Spanish MINECO, Project FIS2013-48087-C2-1-P and FIS2013-48087-C2-2-P. G.M. acknowledges MINECO PhD grant BES-2014-069355. We are grateful to M. A. Moreno, J. Rodriguez, and I. Tanarro for technical help and to V. J. Herrero and I. Tanarro for discussions and manuscript preparation. es_ES
dc.language Inglés es_ES
dc.publisher American Astronomical Society es_ES
dc.relation.ispartof The Astrophysical Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Methods: Laboratory: Molecular es_ES
dc.subject Planets and satellites: Composition es_ES
dc.subject Techniques: Spectroscopic es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title OPTICAL CONSTANTS AND BAND STRENGTHS OF CH4:C2H6 ICES IN THE NEAR- AND MID-INFRARED es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3847/0004-637X/825/2/156 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FIS2013-48087-C2-1-P/ES/MODELOS EXPERIMENTALES Y TEORICOS PARA SISTEMAS ASTROFISICOS Y ATMOSFERICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2014-069355/ES/BES-2014-069355/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FIS2013-48087-C2-2-P/ES/MODELOS DE LABORATORIO APLICADOS A OBJETOS TRANSNEPTUNIANOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Molpeceres, G.; Satorre, MÁ.; Ortigoso, J.; Millán Verdú, C.; Escribano, R.; Mate, B. (2016). OPTICAL CONSTANTS AND BAND STRENGTHS OF CH4:C2H6 ICES IN THE NEAR- AND MID-INFRARED. The Astrophysical Journal. 825(2). https://doi.org/10.3847/0004-637X/825/2/156 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.3847/0004-637X/825/2/156 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 825 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\326258 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Barucci, M. A., Cruikshank, D. P., Dotto, E., Merlin, F., Poulet, F., Dalle Ore, C., … de Bergh, C. (2005). Is Sedna another Triton? Astronomy & Astrophysics, 439(2), L1-L4. doi:10.1051/0004-6361:200500144 es_ES
dc.description.references Bossa, J.-B., Maté, B., Fransen, C., Cazaux, S., Pilling, S., Rocha, W. R. M., … Linnartz, H. (2015). POROSITY AND BAND-STRENGTH MEASUREMENTS OF MULTI-PHASE COMPOSITE ICES. The Astrophysical Journal, 814(1), 47. doi:10.1088/0004-637x/814/1/47 es_ES
dc.description.references Bouilloud, M., Fray, N., Bénilan, Y., Cottin, H., Gazeau, M.-C., & Jolly, A. (2015). Bibliographic review and new measurements of the infrared band strengths of pure molecules at 25 K: H2O, CO2, CO, CH4, NH3, CH3OH, HCOOH and H2CO. Monthly Notices of the Royal Astronomical Society, 451(2), 2145-2160. doi:10.1093/mnras/stv1021 es_ES
dc.description.references Brown, M. E., Barkume, K. M., Blake, G. A., Schaller, E. L., Rabinowitz, D. L., Roe, H. G., & Trujillo, C. A. (2006). Methane and Ethane on the Bright Kuiper Belt Object 2005 FY9. The Astronomical Journal, 133(1), 284-289. doi:10.1086/509734 es_ES
dc.description.references Brunetto, R., Caniglia, G., Baratta, G. A., & Palumbo, M. E. (2008). Integrated Near‐Infrared Band Strengths of Solid CH4and Its Mixtures with N2. The Astrophysical Journal, 686(2), 1480-1485. doi:10.1086/591509 es_ES
dc.description.references Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I. J., Refson, K., & Payne, M. C. (2005). First principles methods using CASTEP. Zeitschrift für Kristallographie - Crystalline Materials, 220(5/6). doi:10.1524/zkri.220.5.567.65075 es_ES
dc.description.references Cruikshank, D. P., Grundy, W. M., DeMeo, F. E., Buie, M. W., Binzel, R. P., Jennings, D. E., … Weaver, H. A. (2015). The surface compositions of Pluto and Charon. Icarus, 246, 82-92. doi:10.1016/j.icarus.2014.05.023 es_ES
dc.description.references New Rules for AAAS-Newcomb Cleveland Prize. (1976). Science, 194(4267), 835-835. doi:10.1126/science.194.4267.835 es_ES
dc.description.references Dalle Ore, C. M., Barucci, M. A., Emery, J. P., Cruikshank, D. P., Dalle Ore, L. V., Merlin, F., … Dotto, E. (2009). Composition of KBO (50000) Quaoar. Astronomy & Astrophysics, 501(1), 349-357. doi:10.1051/0004-6361/200911752 es_ES
dc.description.references Dalton, J. B., Cruikshank, D. P., Stephan, K., McCord, T. B., Coustenis, A., Carlson, R. W., & Coradini, A. (2010). Chemical Composition of Icy Satellite Surfaces. Space Science Reviews, 153(1-4), 113-154. doi:10.1007/s11214-010-9665-8 es_ES
dc.description.references Delsanti, A., Merlin, F., Guilbert-Lepoutre, A., Bauer, J., Yang, B., & Meech, K. J. (2010). Methane, ammonia, and their irradiation products at the surface of an intermediate-size KBO? Astronomy and Astrophysics, 520, A40. doi:10.1051/0004-6361/201014296 es_ES
dc.description.references DeMeo, F. E., Dumas, C., de Bergh, C., Protopapa, S., Cruikshank, D. P., Geballe, T. R., … Barucci, M. A. (2010). A search for ethane on Pluto and Triton. Icarus, 208(1), 412-424. doi:10.1016/j.icarus.2010.01.014 es_ES
dc.description.references De Vries, A. E., Pedrys, R., Haring, R. A., Haring, A., & Saris, F. W. (1984). Emission of large hydrocarbons from frozen CH4 by keV proton irradiation. Nature, 311(5981), 39-40. doi:10.1038/311039a0 es_ES
dc.description.references Dohnálek, Z., Kimmel, G. A., Ayotte, P., Smith, R. S., & Kay, B. D. (2003). The deposition angle-dependent density of amorphous solid water films. The Journal of Chemical Physics, 118(1), 364-372. doi:10.1063/1.1525805 es_ES
dc.description.references DOUTE, S. (1999). Evidence for Methane Segregation at the Surface of Pluto. Icarus, 142(2), 421-444. doi:10.1006/icar.1999.6226 es_ES
dc.description.references Escribano, R., Timón, V., Gálvez, O., Maté, B., Moreno, M. A., & Herrero, V. J. (2014). On the infrared activation of the breathing mode of methane in ice. Phys. Chem. Chem. Phys., 16(31), 16694-16700. doi:10.1039/c4cp01573h es_ES
dc.description.references Gálvez, Ó., Maté, B., Herrero, V. J., & Escribano, R. (2009). SPECTROSCOPIC EFFECTS IN CH4/H2O ICES. The Astrophysical Journal, 703(2), 2101-2107. doi:10.1088/0004-637x/703/2/2101 es_ES
dc.description.references Gerakines, P. A., Bray, J. J., Davis, A., & Richey, C. R. (2005). The Strengths of Near‐Infrared Absorption Features Relevant to Interstellar and Planetary Ices. The Astrophysical Journal, 620(2), 1140-1150. doi:10.1086/427166 es_ES
dc.description.references Gerakines, P. A., & Hudson, R. L. (2015). INFRARED SPECTRA AND OPTICAL CONSTANTS OF ELUSIVE AMORPHOUS METHANE. The Astrophysical Journal, 805(2), L20. doi:10.1088/2041-8205/805/2/l20 es_ES
dc.description.references Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27(15), 1787-1799. doi:10.1002/jcc.20495 es_ES
dc.description.references Grundy, W. (2002). The Temperature-Dependent Spectrum of Methane Ice I between 0.7 and 5 μm and Opportunities for Near-Infrared Remote Thermometry. Icarus, 155(2), 486-496. doi:10.1006/icar.2001.6726 es_ES
dc.description.references Grundy, W. M., Young, L. A., Stansberry, J. A., Buie, M. W., Olkin, C. B., & Young, E. F. (2010). Near-infrared spectral monitoring of Triton with IRTF/SpeX II: Spatial distribution and evolution of ices. Icarus, 205(2), 594-604. doi:10.1016/j.icarus.2009.08.005 es_ES
dc.description.references Hudgins, D. M., Sandford, S. A., Allamandola, L. J., & Tielens, A. G. G. M. (1993). Mid- and far-infrared spectroscopy of ices - Optical constants and integrated absorbances. The Astrophysical Journal Supplement Series, 86, 713. doi:10.1086/191796 es_ES
dc.description.references Hudson, R. L., Gerakines, P. A., & Loeffler, M. J. (2015). Activation of weak IR fundamentals of two species of astrochemical interest in the Td point group – the importance of amorphous ices. Physical Chemistry Chemical Physics, 17(19), 12545-12552. doi:10.1039/c5cp00975h es_ES
dc.description.references Hudson, R. L., Gerakines, P. A., & Moore, M. H. (2014). Infrared spectra and optical constants of astronomical ices: II. Ethane and ethylene. Icarus, 243, 148-157. doi:10.1016/j.icarus.2014.09.001 es_ES
dc.description.references Licandro, J., Pinilla-Alonso, N., Pedani, M., Oliva, E., Tozzi, G. P., & Grundy, W. M. (2006). The methane ice rich surface of large TNO 2005 FY9: a Pluto-twin in the trans-neptunian belt? Astronomy & Astrophysics, 445(3), L35-L38. doi:10.1051/0004-6361:200500219 es_ES
dc.description.references Luna, R., Satorre, M. Á., Domingo, M., Millán, C., & Santonja, C. (2012). Density and refractive index of binary CH4, N2 and CO2 ice mixtures. Icarus, 221(1), 186-191. doi:10.1016/j.icarus.2012.07.016 es_ES
dc.description.references MASTRAPA, R., BERNSTEIN, M., SANDFORD, S., ROUSH, T., CRUIKSHANK, D., & ORE, C. (2008). Optical constants of amorphous and crystalline H2O-ice in the near infrared from 1.1 to 2.6 μm. Icarus, 197(1), 307-320. doi:10.1016/j.icarus.2008.04.008 es_ES
dc.description.references Merlin, F. (2015). New constraints on the surface of Pluto. Astronomy & Astrophysics, 582, A39. doi:10.1051/0004-6361/201526721 es_ES
dc.description.references Merlin, F., Barucci, M. A., de Bergh, C., DeMeo, F. E., Alvarez-Candal, A., Dumas, C., & Cruikshank, D. P. (2010). Chemical and physical properties of the variegated Pluto and Charon surfaces☆. Icarus, 210(2), 930-943. doi:10.1016/j.icarus.2010.07.028 es_ES
dc.description.references Nakamura, R., Sumikawa, S., Ishiguro, M., Mukai, T., Iwamuro, F., Terada, H., … Maihara, T. (2000). Subaru Infrared Spectroscopy of the Pluto–Charon System. Publications of the Astronomical Society of Japan, 52(4), 551-556. doi:10.1093/pasj/52.4.551 es_ES
dc.description.references Pearl, J., Ngoh, M., Ospina, M., & Khanna, R. (1991). Optical constants of solid methane and ethane from 10,000 to 450 cm−1. Journal of Geophysical Research, 96(E2), 17477. doi:10.1029/91je01741 es_ES
dc.description.references Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865 es_ES
dc.description.references Quirico, E., & Schmitt, B. (1997). Near-Infrared Spectroscopy of Simple Hydrocarbons and Carbon Oxides Diluted in Solid N2and as Pure Ices: Implications for Triton and Pluto. Icarus, 127(2), 354-378. doi:10.1006/icar.1996.5663 es_ES
dc.description.references Refson, K., Tulip, P. R., & Clark, S. J. (2006). Variational density-functional perturbation theory for dielectrics and lattice dynamics. Physical Review B, 73(15). doi:10.1103/physrevb.73.155114 es_ES
dc.description.references Richey, C. R., & Gerakines, P. A. (2012). NEAR-INFRARED BAND STRENGTHS OF MOLECULES DILUTED IN N2AND H2O ICE MIXTURES RELEVANT TO INTERSTELLAR AND PLANETARY ICES. The Astrophysical Journal, 759(1), 74. doi:10.1088/0004-637x/759/1/74 es_ES
dc.description.references Satorre, M. Á., Domingo, M., Millán, C., Luna, R., Vilaplana, R., & Santonja, C. (2008). Density of , and ices at different temperatures of deposition. Planetary and Space Science, 56(13), 1748-1752. doi:10.1016/j.pss.2008.07.015 es_ES
dc.description.references Satorre, M. Á., Leliwa-Kopystynski, J., Santonja, C., & Luna, R. (2013). Refractive index and density of ammonia ice at different temperatures of deposition. Icarus, 225(1), 703-708. doi:10.1016/j.icarus.2013.04.023 es_ES
dc.description.references Schaller, E. L., & Brown, M. E. (2007). Detection of Methane on Kuiper Belt Object (50000) Quaoar. The Astrophysical Journal, 670(1), L49-L51. doi:10.1086/524140 es_ES
dc.description.references Stern, S. A., Bagenal, F., Ennico, K., Gladstone, G. R., Grundy, W. M., McKinnon, W. B., … Weaver, H. A. (2015). The Pluto system: Initial results from its exploration by New Horizons. Science, 350(6258), aad1815-aad1815. doi:10.1126/science.aad1815 es_ES
dc.description.references Strazzulla, G., Baratta, G. A., Domingo, M., & Satorre, M. A. (2002). Ion irradiation of frozen C2Hn (n=2, 4, 6). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 191(1-4), 714-717. doi:10.1016/s0168-583x(02)00639-0 es_ES
dc.description.references Van Nes, G. J. H., & Vos, A. (1978). Single-crystal structures and electron density distributions of ethane, ethylene and acetylene. I. Single-crystal X-ray structure determinations of two modifications of ethane. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 34(6), 1947-1956. doi:10.1107/s0567740878007037 es_ES
dc.description.references Wisnosky, M. G., Eggers, D. F., Fredrickson, L. R., & Decius, J. C. (1983). A metastable solid phase of ethane. The Journal of Chemical Physics, 79(7), 3513-3516. doi:10.1063/1.446204 es_ES
dc.description.references Zanchet, A., Rodríguez-Lazcano, Y., Gálvez, Ó., Herrero, V. J., Escribano, R., & Maté, B. (2013). OPTICAL CONSTANTS OF NH3AND NH3:N2AMORPHOUS ICES IN THE NEAR-INFRARED AND MID-INFRARED REGIONS. The Astrophysical Journal, 777(1), 26. doi:10.1088/0004-637x/777/1/26 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem