Mostrar el registro sencillo del ítem
dc.contributor.author | Molpeceres, German | es_ES |
dc.contributor.author | Satorre, M. Á. | es_ES |
dc.contributor.author | Ortigoso, Juan | es_ES |
dc.contributor.author | Millán Verdú, Carlos | es_ES |
dc.contributor.author | Escribano, Rafael | es_ES |
dc.contributor.author | Mate, Belen | es_ES |
dc.date.accessioned | 2020-04-17T12:49:22Z | |
dc.date.available | 2020-04-17T12:49:22Z | |
dc.date.issued | 2016 | es_ES |
dc.identifier.issn | 0004-637X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/140880 | |
dc.description.abstract | [EN] We present a spectroscopic study of methane-ethane ice mixtures. We have grown CH4:C2H6 mixtures with ratios 3:1, 1:1, and 1:3 at 18 and 30 K, plus pure methane and ethane ices, and have studied them in the near-infrared (NIR) and mid-infrared (MIR) ranges. We have determined densities of all species mentioned above. For amorphous ethane grown at 18 and 30 K we have obtained a density of 0.41 and 0.54 g cm(-3), respectively, lower than a previous measurement of the density of the crystalline species, 0.719 g cm(-3). As far as we know this is the first determination of the density of amorphous ethane ice. We have measured band shifts of the main NIR methane and ethane features in the mixtures with respect to the corresponding values in the pure ices. We have estimated band strengths of these bands in the NIR and MIR ranges. In general, intensity decay in methane modes was detected in the mixtures, whereas for ethane no clear tendency was observed. Optical constants of the mixtures at 30 and 18 K have also been evaluated. These values can be used to trace the presence of these species in the surface of trans-Neptunian objects. Furthermore, we have carried out a theoretical calculation of these ice mixtures. Simulation cells for the amorphous solids have been constructed using a Metropolis Monte Carlo procedure. Relaxation of the cells and prediction of infrared spectra have been carried out at density functional theory level. | es_ES |
dc.description.sponsorship | Funds have been provided for this research from the Spanish MINECO, Project FIS2013-48087-C2-1-P and FIS2013-48087-C2-2-P. G.M. acknowledges MINECO PhD grant BES-2014-069355. We are grateful to M. A. Moreno, J. Rodriguez, and I. Tanarro for technical help and to V. J. Herrero and I. Tanarro for discussions and manuscript preparation. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Astronomical Society | es_ES |
dc.relation.ispartof | The Astrophysical Journal | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Methods: Laboratory: Molecular | es_ES |
dc.subject | Planets and satellites: Composition | es_ES |
dc.subject | Techniques: Spectroscopic | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | OPTICAL CONSTANTS AND BAND STRENGTHS OF CH4:C2H6 ICES IN THE NEAR- AND MID-INFRARED | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3847/0004-637X/825/2/156 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//FIS2013-48087-C2-1-P/ES/MODELOS EXPERIMENTALES Y TEORICOS PARA SISTEMAS ASTROFISICOS Y ATMOSFERICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BES-2014-069355/ES/BES-2014-069355/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//FIS2013-48087-C2-2-P/ES/MODELOS DE LABORATORIO APLICADOS A OBJETOS TRANSNEPTUNIANOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Molpeceres, G.; Satorre, MÁ.; Ortigoso, J.; Millán Verdú, C.; Escribano, R.; Mate, B. (2016). OPTICAL CONSTANTS AND BAND STRENGTHS OF CH4:C2H6 ICES IN THE NEAR- AND MID-INFRARED. The Astrophysical Journal. 825(2). https://doi.org/10.3847/0004-637X/825/2/156 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.3847/0004-637X/825/2/156 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 825 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\326258 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Barucci, M. A., Cruikshank, D. P., Dotto, E., Merlin, F., Poulet, F., Dalle Ore, C., … de Bergh, C. (2005). Is Sedna another Triton? Astronomy & Astrophysics, 439(2), L1-L4. doi:10.1051/0004-6361:200500144 | es_ES |
dc.description.references | Bossa, J.-B., Maté, B., Fransen, C., Cazaux, S., Pilling, S., Rocha, W. R. M., … Linnartz, H. (2015). POROSITY AND BAND-STRENGTH MEASUREMENTS OF MULTI-PHASE COMPOSITE ICES. The Astrophysical Journal, 814(1), 47. doi:10.1088/0004-637x/814/1/47 | es_ES |
dc.description.references | Bouilloud, M., Fray, N., Bénilan, Y., Cottin, H., Gazeau, M.-C., & Jolly, A. (2015). Bibliographic review and new measurements of the infrared band strengths of pure molecules at 25 K: H2O, CO2, CO, CH4, NH3, CH3OH, HCOOH and H2CO. Monthly Notices of the Royal Astronomical Society, 451(2), 2145-2160. doi:10.1093/mnras/stv1021 | es_ES |
dc.description.references | Brown, M. E., Barkume, K. M., Blake, G. A., Schaller, E. L., Rabinowitz, D. L., Roe, H. G., & Trujillo, C. A. (2006). Methane and Ethane on the Bright Kuiper Belt Object 2005 FY9. The Astronomical Journal, 133(1), 284-289. doi:10.1086/509734 | es_ES |
dc.description.references | Brunetto, R., Caniglia, G., Baratta, G. A., & Palumbo, M. E. (2008). Integrated Near‐Infrared Band Strengths of Solid CH4and Its Mixtures with N2. The Astrophysical Journal, 686(2), 1480-1485. doi:10.1086/591509 | es_ES |
dc.description.references | Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I. J., Refson, K., & Payne, M. C. (2005). First principles methods using CASTEP. Zeitschrift für Kristallographie - Crystalline Materials, 220(5/6). doi:10.1524/zkri.220.5.567.65075 | es_ES |
dc.description.references | Cruikshank, D. P., Grundy, W. M., DeMeo, F. E., Buie, M. W., Binzel, R. P., Jennings, D. E., … Weaver, H. A. (2015). The surface compositions of Pluto and Charon. Icarus, 246, 82-92. doi:10.1016/j.icarus.2014.05.023 | es_ES |
dc.description.references | New Rules for AAAS-Newcomb Cleveland Prize. (1976). Science, 194(4267), 835-835. doi:10.1126/science.194.4267.835 | es_ES |
dc.description.references | Dalle Ore, C. M., Barucci, M. A., Emery, J. P., Cruikshank, D. P., Dalle Ore, L. V., Merlin, F., … Dotto, E. (2009). Composition of KBO (50000) Quaoar. Astronomy & Astrophysics, 501(1), 349-357. doi:10.1051/0004-6361/200911752 | es_ES |
dc.description.references | Dalton, J. B., Cruikshank, D. P., Stephan, K., McCord, T. B., Coustenis, A., Carlson, R. W., & Coradini, A. (2010). Chemical Composition of Icy Satellite Surfaces. Space Science Reviews, 153(1-4), 113-154. doi:10.1007/s11214-010-9665-8 | es_ES |
dc.description.references | Delsanti, A., Merlin, F., Guilbert-Lepoutre, A., Bauer, J., Yang, B., & Meech, K. J. (2010). Methane, ammonia, and their irradiation products at the surface of an intermediate-size KBO? Astronomy and Astrophysics, 520, A40. doi:10.1051/0004-6361/201014296 | es_ES |
dc.description.references | DeMeo, F. E., Dumas, C., de Bergh, C., Protopapa, S., Cruikshank, D. P., Geballe, T. R., … Barucci, M. A. (2010). A search for ethane on Pluto and Triton. Icarus, 208(1), 412-424. doi:10.1016/j.icarus.2010.01.014 | es_ES |
dc.description.references | De Vries, A. E., Pedrys, R., Haring, R. A., Haring, A., & Saris, F. W. (1984). Emission of large hydrocarbons from frozen CH4 by keV proton irradiation. Nature, 311(5981), 39-40. doi:10.1038/311039a0 | es_ES |
dc.description.references | Dohnálek, Z., Kimmel, G. A., Ayotte, P., Smith, R. S., & Kay, B. D. (2003). The deposition angle-dependent density of amorphous solid water films. The Journal of Chemical Physics, 118(1), 364-372. doi:10.1063/1.1525805 | es_ES |
dc.description.references | DOUTE, S. (1999). Evidence for Methane Segregation at the Surface of Pluto. Icarus, 142(2), 421-444. doi:10.1006/icar.1999.6226 | es_ES |
dc.description.references | Escribano, R., Timón, V., Gálvez, O., Maté, B., Moreno, M. A., & Herrero, V. J. (2014). On the infrared activation of the breathing mode of methane in ice. Phys. Chem. Chem. Phys., 16(31), 16694-16700. doi:10.1039/c4cp01573h | es_ES |
dc.description.references | Gálvez, Ó., Maté, B., Herrero, V. J., & Escribano, R. (2009). SPECTROSCOPIC EFFECTS IN CH4/H2O ICES. The Astrophysical Journal, 703(2), 2101-2107. doi:10.1088/0004-637x/703/2/2101 | es_ES |
dc.description.references | Gerakines, P. A., Bray, J. J., Davis, A., & Richey, C. R. (2005). The Strengths of Near‐Infrared Absorption Features Relevant to Interstellar and Planetary Ices. The Astrophysical Journal, 620(2), 1140-1150. doi:10.1086/427166 | es_ES |
dc.description.references | Gerakines, P. A., & Hudson, R. L. (2015). INFRARED SPECTRA AND OPTICAL CONSTANTS OF ELUSIVE AMORPHOUS METHANE. The Astrophysical Journal, 805(2), L20. doi:10.1088/2041-8205/805/2/l20 | es_ES |
dc.description.references | Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27(15), 1787-1799. doi:10.1002/jcc.20495 | es_ES |
dc.description.references | Grundy, W. (2002). The Temperature-Dependent Spectrum of Methane Ice I between 0.7 and 5 μm and Opportunities for Near-Infrared Remote Thermometry. Icarus, 155(2), 486-496. doi:10.1006/icar.2001.6726 | es_ES |
dc.description.references | Grundy, W. M., Young, L. A., Stansberry, J. A., Buie, M. W., Olkin, C. B., & Young, E. F. (2010). Near-infrared spectral monitoring of Triton with IRTF/SpeX II: Spatial distribution and evolution of ices. Icarus, 205(2), 594-604. doi:10.1016/j.icarus.2009.08.005 | es_ES |
dc.description.references | Hudgins, D. M., Sandford, S. A., Allamandola, L. J., & Tielens, A. G. G. M. (1993). Mid- and far-infrared spectroscopy of ices - Optical constants and integrated absorbances. The Astrophysical Journal Supplement Series, 86, 713. doi:10.1086/191796 | es_ES |
dc.description.references | Hudson, R. L., Gerakines, P. A., & Loeffler, M. J. (2015). Activation of weak IR fundamentals of two species of astrochemical interest in the Td point group – the importance of amorphous ices. Physical Chemistry Chemical Physics, 17(19), 12545-12552. doi:10.1039/c5cp00975h | es_ES |
dc.description.references | Hudson, R. L., Gerakines, P. A., & Moore, M. H. (2014). Infrared spectra and optical constants of astronomical ices: II. Ethane and ethylene. Icarus, 243, 148-157. doi:10.1016/j.icarus.2014.09.001 | es_ES |
dc.description.references | Licandro, J., Pinilla-Alonso, N., Pedani, M., Oliva, E., Tozzi, G. P., & Grundy, W. M. (2006). The methane ice rich surface of large TNO 2005 FY9: a Pluto-twin in the trans-neptunian belt? Astronomy & Astrophysics, 445(3), L35-L38. doi:10.1051/0004-6361:200500219 | es_ES |
dc.description.references | Luna, R., Satorre, M. Á., Domingo, M., Millán, C., & Santonja, C. (2012). Density and refractive index of binary CH4, N2 and CO2 ice mixtures. Icarus, 221(1), 186-191. doi:10.1016/j.icarus.2012.07.016 | es_ES |
dc.description.references | MASTRAPA, R., BERNSTEIN, M., SANDFORD, S., ROUSH, T., CRUIKSHANK, D., & ORE, C. (2008). Optical constants of amorphous and crystalline H2O-ice in the near infrared from 1.1 to 2.6 μm. Icarus, 197(1), 307-320. doi:10.1016/j.icarus.2008.04.008 | es_ES |
dc.description.references | Merlin, F. (2015). New constraints on the surface of Pluto. Astronomy & Astrophysics, 582, A39. doi:10.1051/0004-6361/201526721 | es_ES |
dc.description.references | Merlin, F., Barucci, M. A., de Bergh, C., DeMeo, F. E., Alvarez-Candal, A., Dumas, C., & Cruikshank, D. P. (2010). Chemical and physical properties of the variegated Pluto and Charon surfaces☆. Icarus, 210(2), 930-943. doi:10.1016/j.icarus.2010.07.028 | es_ES |
dc.description.references | Nakamura, R., Sumikawa, S., Ishiguro, M., Mukai, T., Iwamuro, F., Terada, H., … Maihara, T. (2000). Subaru Infrared Spectroscopy of the Pluto–Charon System. Publications of the Astronomical Society of Japan, 52(4), 551-556. doi:10.1093/pasj/52.4.551 | es_ES |
dc.description.references | Pearl, J., Ngoh, M., Ospina, M., & Khanna, R. (1991). Optical constants of solid methane and ethane from 10,000 to 450 cm−1. Journal of Geophysical Research, 96(E2), 17477. doi:10.1029/91je01741 | es_ES |
dc.description.references | Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865 | es_ES |
dc.description.references | Quirico, E., & Schmitt, B. (1997). Near-Infrared Spectroscopy of Simple Hydrocarbons and Carbon Oxides Diluted in Solid N2and as Pure Ices: Implications for Triton and Pluto. Icarus, 127(2), 354-378. doi:10.1006/icar.1996.5663 | es_ES |
dc.description.references | Refson, K., Tulip, P. R., & Clark, S. J. (2006). Variational density-functional perturbation theory for dielectrics and lattice dynamics. Physical Review B, 73(15). doi:10.1103/physrevb.73.155114 | es_ES |
dc.description.references | Richey, C. R., & Gerakines, P. A. (2012). NEAR-INFRARED BAND STRENGTHS OF MOLECULES DILUTED IN N2AND H2O ICE MIXTURES RELEVANT TO INTERSTELLAR AND PLANETARY ICES. The Astrophysical Journal, 759(1), 74. doi:10.1088/0004-637x/759/1/74 | es_ES |
dc.description.references | Satorre, M. Á., Domingo, M., Millán, C., Luna, R., Vilaplana, R., & Santonja, C. (2008). Density of , and ices at different temperatures of deposition. Planetary and Space Science, 56(13), 1748-1752. doi:10.1016/j.pss.2008.07.015 | es_ES |
dc.description.references | Satorre, M. Á., Leliwa-Kopystynski, J., Santonja, C., & Luna, R. (2013). Refractive index and density of ammonia ice at different temperatures of deposition. Icarus, 225(1), 703-708. doi:10.1016/j.icarus.2013.04.023 | es_ES |
dc.description.references | Schaller, E. L., & Brown, M. E. (2007). Detection of Methane on Kuiper Belt Object (50000) Quaoar. The Astrophysical Journal, 670(1), L49-L51. doi:10.1086/524140 | es_ES |
dc.description.references | Stern, S. A., Bagenal, F., Ennico, K., Gladstone, G. R., Grundy, W. M., McKinnon, W. B., … Weaver, H. A. (2015). The Pluto system: Initial results from its exploration by New Horizons. Science, 350(6258), aad1815-aad1815. doi:10.1126/science.aad1815 | es_ES |
dc.description.references | Strazzulla, G., Baratta, G. A., Domingo, M., & Satorre, M. A. (2002). Ion irradiation of frozen C2Hn (n=2, 4, 6). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 191(1-4), 714-717. doi:10.1016/s0168-583x(02)00639-0 | es_ES |
dc.description.references | Van Nes, G. J. H., & Vos, A. (1978). Single-crystal structures and electron density distributions of ethane, ethylene and acetylene. I. Single-crystal X-ray structure determinations of two modifications of ethane. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 34(6), 1947-1956. doi:10.1107/s0567740878007037 | es_ES |
dc.description.references | Wisnosky, M. G., Eggers, D. F., Fredrickson, L. R., & Decius, J. C. (1983). A metastable solid phase of ethane. The Journal of Chemical Physics, 79(7), 3513-3516. doi:10.1063/1.446204 | es_ES |
dc.description.references | Zanchet, A., Rodríguez-Lazcano, Y., Gálvez, Ó., Herrero, V. J., Escribano, R., & Maté, B. (2013). OPTICAL CONSTANTS OF NH3AND NH3:N2AMORPHOUS ICES IN THE NEAR-INFRARED AND MID-INFRARED REGIONS. The Astrophysical Journal, 777(1), 26. doi:10.1088/0004-637x/777/1/26 | es_ES |