- -

Genetic differentiation between insular and continental populations of migratory and resident warblers, the Great Reed Warbler Acrocephalus arundinaceus and the Cetti's Warbler Cettia cetti Journal of Ornithology

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Genetic differentiation between insular and continental populations of migratory and resident warblers, the Great Reed Warbler Acrocephalus arundinaceus and the Cetti's Warbler Cettia cetti Journal of Ornithology

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ceresa, F. es_ES
dc.contributor.author Belda, E.J. es_ES
dc.contributor.author Kvist, Laura es_ES
dc.contributor.author Kajanus, M. es_ES
dc.contributor.author Monrós González, Juan Salvador es_ES
dc.date.accessioned 2020-04-17T12:49:23Z
dc.date.available 2020-04-17T12:49:23Z
dc.date.issued 2018 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140881
dc.description.abstract [EN] Island populations are frequently smaller than continental populations, have lower genetic diversity, are more inbred and show genetic differentiation from the mainland ones. However, sufficient numbers of immigrants may reduce the differentiation of insular populations and moderate the effects of genetic drift. In this study, we compared insular and continental populations of Cetti¿s Warbler Cettia cetti and Great Reed Warbler Acrocephalus arundinaceus. We assessed the degree of genetic differentiation between insular and continental birds, their demographic history and genetic diversity. We compared the results, taking into account the differences in migration strategy and morphology of the two warblers. We found slightly lower genetic diversity in the insular populations than in the continental birds, possibly because of the lower population size or reduced immigration. The genetic differentiation between island and mainland birds was low, but higher in Cetti¿s Warbler than in the Great Reed Warbler, suggesting differences in the species¿ capability of crossing the sea. We found evidence for a past bottleneck in both the insular and continental populations of Cetti¿s Warbler, while for the Great Reed Warbler we found no signs of past population reductions. A high dispersal capability of the Great Reed Warbler may have allowed high gene flow, which may explain the observed interspecific differences in the demographic history of the Great Reed Warbler and Cetti¿s Warbler. es_ES
dc.description.sponsorship We acknowledge M. Rebassa, H. Rguibi-Idrissi, M. Marin, J. Gomez, Santi, Luis, Kames and family and many others, who have helped us with the fieldwork. We would also like to thank the authorities of the Marjal de Pego-Oliva Natural Park, the S'Albufera de Mallorca Natural Park, the Consejeria de medio Ambiente y Desarrollo Rural de Castilla-La Mancha, the Servei de Conservacio de la Biodiversitat de la Generalitat Valenciana and the Haut Commissariat aux Eaux et Forets et a la lutte contre la desertification de Rabat, Morocco for providing the facilities to work in protected areas and for the relevant permits. We are grateful to M. Serra and the researchers and Ph.D. students of the Laboratory of Evolutionary Ecology (Institute Cavanilles of Biodiversity and Evolutionary Biology University of Valencia), for providing a laboratory for DNA extraction. This study has been partly financed by projects CGL2005-02041/BOS and CGL201021933-0O2-02 of the Spanish Ministry of Science and Innovation and by the University of Oulu. F. Ceresa was supported by an Atraent talent grant from the University of Valencia. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Ornithology (Online) es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Dispersal es_ES
dc.subject Dispersal barrier es_ES
dc.subject Gene flow es_ES
dc.subject Insularity es_ES
dc.subject Microsatellites es_ES
dc.subject.classification BOTANICA es_ES
dc.subject.classification ZOOLOGIA es_ES
dc.title Genetic differentiation between insular and continental populations of migratory and resident warblers, the Great Reed Warbler Acrocephalus arundinaceus and the Cetti's Warbler Cettia cetti Journal of Ornithology es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10336-018-1543-2 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CGL2010-21933-C02-02/ES/EFECTOS DEL CALENTAMIENTO GLOBAL SOBRE LA FECUNDIDAD Y LA SUPERVIVENCIA DE PASERIFORMES MEDITERRANEOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CGL2005-02041/ES/CONSERVACION Y GESTION DE LAS POBLACIONES DE ESCRIBANO PALUSTRE EMBERIZA SCHOENICLUS WITHERBYI EN LA PENINSULA IBERICA: APLICACION DE MODELOS PREDICTIVOS DE DISTRIBUCION, DEMOGRAFIA Y GENETICA DE POB/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Ceresa, F.; Belda, E.; Kvist, L.; Kajanus, M.; Monrós González, JS. (2018). Genetic differentiation between insular and continental populations of migratory and resident warblers, the Great Reed Warbler Acrocephalus arundinaceus and the Cetti's Warbler Cettia cetti Journal of Ornithology. Journal of Ornithology (Online). 159(3):703-712. https://doi.org/10.1007/s10336-018-1543-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10336-018-1543-2 es_ES
dc.description.upvformatpinicio 703 es_ES
dc.description.upvformatpfin 712 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 159 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 2193-7206 es_ES
dc.relation.pasarela S\352548 es_ES
dc.contributor.funder University of Oulu es_ES
dc.contributor.funder Universitat de València es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Agudo R, Rico C, Hiraldo F, Donázar JA (2011) Evidence of connectivity between continental and differentiated insular populations in a highly mobile species. Divers Distrib 17:1–12 es_ES
dc.description.references Beerli P, Felsenstein J (1999) Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. Genetics 152:763–773 es_ES
dc.description.references Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci USA 98:4563–4568 es_ES
dc.description.references BirdLife International (2016) Cettia cetti. The IUCN Red List of threatened species 2016: e.T22714445A87542508. http://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22714445A87542508.en . Accessed 4 May 2017 es_ES
dc.description.references Ceresa F, Belda EJ, Kvist L, Rguibi-Idrissi H, Monrós JS (2015) Does fragmentation of wetlands affect gene flow in sympatric Acrocephalus warblers with different migration strategies? J Avian Biol 46:577–588 es_ES
dc.description.references Ceresa F, Belda EJ, Monrós JS (2016) Similar dispersal patterns between two closely related birds with contrasting migration strategies. Popul Ecol 58:421427 es_ES
dc.description.references Clement P (2017) Cetti’s Warbler (Cettia cetti). In: del Hoyo J, Elliott A, Sargatal J, Christie DA, de Juana E (ed) Handbook of the birds of the world alive. Lynx, Barcelona. http://www.hbw.com/node/58749 . Accessed 7 March 2017 es_ES
dc.description.references Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014 es_ES
dc.description.references Cornuet JM, Santos F, Beaumont MA, Robert CP, Marin JM, Balding DJ, Guillemaud T, Estoup A (2008) Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation. Bioinformatics 24:2713–2719 es_ES
dc.description.references Dawson DA, Hanotte O, Greig C, Stewart IRK, Burke T (2000) Polymorphic microsatellites in the Blue Tit Parus caeruleus and their cross-species utility in 20 songbird families. Mol Ecol 9:1941–1944 es_ES
dc.description.references Ellegren H (1992) Polymerase-chain-reaction (PCR) analysis of microsatellites: a new approach to studies of genetic relationships in birds. Auk 109:886–895 es_ES
dc.description.references Estoup A, Jarne P, Cornuet JM (2002) Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Mol Ecol 11:1591–1604 es_ES
dc.description.references Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620 es_ES
dc.description.references Excoffier L, Lischer H (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567 es_ES
dc.description.references Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587 es_ES
dc.description.references Fletcher WJ, Sánchez Goñi MF (2008) Orbital- and sub-orbital-scale climate impacts on vegetation of the western Mediterranean Basin over the last 48,000 yr. Quat Res. https://doi.org/10.1016/j.yqres.2008.07.002 es_ES
dc.description.references Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics, 2nd edn. Cambridge University Press, Cambridge es_ES
dc.description.references Frentiu FD, Lange CL, Burke T, Owens IPF (2003) Isolation of microsatellite loci in the Capricorn Silvereye, Zosterops lateralis chlorocephalus (Aves: Zosteropidae). Mol Ecol Not 3:462–464 es_ES
dc.description.references Frosch C, Kraus RH, Angst C, Allgöwer R, Michaux J, Teubner J, Nowak C (2014) The genetic legacy of multiple beaver reintroductions in central Europe. PLoS ONE 9:e97619 es_ES
dc.description.references Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318 es_ES
dc.description.references Gibbs HL, Tabak LM, Hobson K (1999) Characterization of microsatellite DNA loci for a Neotropical migrant songbird, the Swainson’s Thrush (Catharus ustulatus). Mol Ecol 8:1551–1552 es_ES
dc.description.references Goudet J (1995) FSTAT: a computer program to calculate F-statistics. J Hered 86:485–486 es_ES
dc.description.references Griffith SC, Stewart IRK, Dawson DA, Owens IPF, Burke T (1999) Contrasting levels of extra-pair paternity in mainland and island populations of the House Sparrow (Passer domesticus): is there an ‘island effect’? Biol J Linn Soc 68:303–316 es_ES
dc.description.references Hansson B, Bensch S, Hasselquist D, Lillandt BG, Wennerberg L, Von Schantz T (2000) Increase of genetic variation over time in a recently founded population of Great Reed Warblers (Acrocephalus arundinaceus) revealed by microsatellites and DNS fingerprinting. Mol Ecol 9:1529–1538 es_ES
dc.description.references Hansson B, Bensch S, Hasselquist D, Nielsen B (2002) Restricted dispersal in a long-distance migrant bird with patchy distribution, the Great Reed Warbler. Oecologia 130:536–542 es_ES
dc.description.references Hodges MF Jr, Krementz DG (1996) Neotropical migratory breeding bird communities in riparian forests of different widths along the Altamaha River, Georgia. Wilson Bull 108:496–506 es_ES
dc.description.references Hogg JT, Forbes SH, Steele BM, Luikart G (2006) Genetic rescue of an insular population of large mammals. Proc R Soc Lond B 273:1491–1499 es_ES
dc.description.references Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405 es_ES
dc.description.references Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94 es_ES
dc.description.references Kennerley P, Pearson D (2010) Reed and bush warblers. Helm, London es_ES
dc.description.references Koenig WD, Van Vuren D, Hooge PN (1996) Detectability, philopatry, and the distribution of dispersal distances in vertebrates. Trends Ecol Evol 11:514–517 es_ES
dc.description.references Koleček J, Jelínek V, Požgayová M, Trnka A, Baslerová P, Honza M, Procházka P (2015) Breeding success and brood parasitism affect return rate and dispersal distances in the Great Reed Warbler. Behav Ecol Sociobiol 69:1845–1853 es_ES
dc.description.references Kraus RH, Hooft P, Megens HJ, Tsvey A, Fokin SY, Ydenberg RC, Prins HH (2013) Global lack of flyway structure in a cosmopolitan bird revealed by a genome wide survey of single nucleotide polymorphisms. Mol Ecol 22:41–55 es_ES
dc.description.references Kraus RH, Figuerola J, Klug K (2016) No genetic structure in a mixed flock of migratory and non-migratory Mallards. J Ornithol 157:919–922 es_ES
dc.description.references Machtans CS, Villard MA, Hannon SJ (1996) Use of riparian buffer strips as movement corridors by forest birds. Conserv Biol 10:1366–1379 es_ES
dc.description.references Madsen T, Shine R, Olsson M, Wittzell H (1999) Conservation biology: restoration of an inbred adder population. Nature 402:34–35 es_ES
dc.description.references Martínez JG, Soler JJ, Soler M, Møller AP, Burke T (1999) Comparative population structure and gene flow of a brood parasite, the Great Spotted Cuckoo (Clamator glandarius), and its primary host, the Magpie (Pica pica). Evolution 53:269–278 es_ES
dc.description.references Mátrai N, Gyurácz J, Lenczl M, Hoffmann G, Bakonyi G, Mátics R (2012) Philopatry analysis of the Great Reed Warbler (Acrocephalus arundinaceus) based on ringing data in Europe. Biologia 67:596–601 es_ES
dc.description.references Neumann K, Wetton JH (1996) Highly polymorphic microsatellites in the House Sparrow Passer domesticus. Mol Ecol 5:307–309 es_ES
dc.description.references Norberg UM (1990) Vertebrate flight, mechanics, physiology, morphology, ecology and evolution. Springer, Berlin es_ES
dc.description.references Ortego J, Aparicio JM, Cordero PJ, Calabuig G (2008) Individual genetic diversity correlates with the size and spatial isolation of natal colonies in a bird metapopulation. Proc R Soc Lond B 275:2039–2047 es_ES
dc.description.references Paradis E, Baillie SR, Sutherland WJ, Gregory RD (1998) Patterns of natal and breeding dispersal in birds. J Anim Ecol 67:518–536 es_ES
dc.description.references Petren K (1998) Microsatellite primers from Geospiza fortis and cross-species amplification in Darwin’s finches. Mol Ecol 7:1782–1784 es_ES
dc.description.references Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 95:536–539 es_ES
dc.description.references Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959 es_ES
dc.description.references Procházka P, Reif J (2000) Analysis of ringing recoveries of Great Reed Warblers (Acrocephalus arundinaceus) ringed or recovered in the Czech Republic and Slovakia. Sylvia 36:91–105 es_ES
dc.description.references R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna es_ES
dc.description.references Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetic software for exact tests and ecumenism. J Hered 86:248–249 es_ES
dc.description.references Richardson DS, Jury FL, Dawson DA, Salgueiro P, Komdeur J, Burke T (2000) Fifty Seychelles Warbler (Acrocephalus sechellensis) microsatellite loci polymorphic in Sylvidae species and their cross-species amplification in other passerine birds. Mol Ecol 9:2225–2230 es_ES
dc.description.references Robinson RA, Freeman SN, Balmer DE, Grantham MJ (2007) Cetti’s Warbler Cettia cetti: analysis of an expanding population. Bird Stud 54:230–235 es_ES
dc.description.references Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106 es_ES
dc.description.references Sutherland GD, Harestad AS, Price K, Lertzman KP (2000) Scaling of natal dispersal distances in terrestrial birds and mammals. Conserv Ecol 4:16. http://www.consecol.org/vol4/iss1/art16 . Accessed 23 Oct 2015 es_ES
dc.description.references Svensson L (1992) Identification guide to European passerines, 4th edn. Svensson, Stockholm es_ES
dc.description.references Van Oosterhout CV, Hutchinson WF, Wills DPM (2004) MICROCHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Not 4(535):538 es_ES
dc.description.references Wang E, Van Wijk RE, Braun MS, Wink M (2017) Gene flow and genetic drift contribute to high genetic diversity with low phylogeographical structure in European Hoopoes (Upupa epops). Mol Phylogenet Evol 113:113–125 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem