Puche-Panadero, R., Pineda-Sanchez, M., Riera-Guasp, M., Roger-Folch, J., Hurtado-Perez, E., & Perez-Cruz, J. (2009). Improved Resolution of the MCSA Method Via Hilbert Transform, Enabling the Diagnosis of Rotor Asymmetries at Very Low Slip. IEEE Transactions on Energy Conversion, 24(1), 52-59. doi:10.1109/tec.2008.2003207
Abd-el -Malek, M., Abdelsalam, A. K., & Hassan, O. E. (2017). Induction motor broken rotor bar fault location detection through envelope analysis of start-up current using Hilbert transform. Mechanical Systems and Signal Processing, 93, 332-350. doi:10.1016/j.ymssp.2017.02.014
Martinez, J., Belahcen, A., & Muetze, A. (2017). Analysis of the Vibration Magnitude of an Induction Motor With Different Numbers of Broken Bars. IEEE Transactions on Industry Applications, 53(3), 2711-2720. doi:10.1109/tia.2017.2657478
[+]
Puche-Panadero, R., Pineda-Sanchez, M., Riera-Guasp, M., Roger-Folch, J., Hurtado-Perez, E., & Perez-Cruz, J. (2009). Improved Resolution of the MCSA Method Via Hilbert Transform, Enabling the Diagnosis of Rotor Asymmetries at Very Low Slip. IEEE Transactions on Energy Conversion, 24(1), 52-59. doi:10.1109/tec.2008.2003207
Abd-el -Malek, M., Abdelsalam, A. K., & Hassan, O. E. (2017). Induction motor broken rotor bar fault location detection through envelope analysis of start-up current using Hilbert transform. Mechanical Systems and Signal Processing, 93, 332-350. doi:10.1016/j.ymssp.2017.02.014
Martinez, J., Belahcen, A., & Muetze, A. (2017). Analysis of the Vibration Magnitude of an Induction Motor With Different Numbers of Broken Bars. IEEE Transactions on Industry Applications, 53(3), 2711-2720. doi:10.1109/tia.2017.2657478
Sapena-Bano, A., Pineda-Sanchez, M., Puche-Panadero, R., Perez-Cruz, J., Roger-Folch, J., Riera-Guasp, M., & Martinez-Roman, J. (2015). Harmonic Order Tracking Analysis: A Novel Method for Fault Diagnosis in Induction Machines. IEEE Transactions on Energy Conversion, 30(3), 833-841. doi:10.1109/tec.2015.2416973
Sapena-Bano, A., Burriel-Valencia, J., Pineda-Sanchez, M., Puche-Panadero, R., & Riera-Guasp, M. (2017). The Harmonic Order Tracking Analysis Method for the Fault Diagnosis in Induction Motors Under Time-Varying Conditions. IEEE Transactions on Energy Conversion, 32(1), 244-256. doi:10.1109/tec.2016.2626008
Burriel-Valencia, J., Puche-Panadero, R., Martinez-Roman, J., Sapena-Bano, A., & Pineda-Sanchez, M. (2017). Short-Frequency Fourier Transform for Fault Diagnosis of Induction Machines Working in Transient Regime. IEEE Transactions on Instrumentation and Measurement, 66(3), 432-440. doi:10.1109/tim.2016.2647458
Yin, Z., & Hou, J. (2016). Recent advances on SVM based fault diagnosis and process monitoring in complicated industrial processes. Neurocomputing, 174, 643-650. doi:10.1016/j.neucom.2015.09.081
Bazan, G. H., Scalassara, P. R., Endo, W., Goedtel, A., Godoy, W. F., & Palácios, R. H. C. (2017). Stator fault analysis of three-phase induction motors using information measures and artificial neural networks. Electric Power Systems Research, 143, 347-356. doi:10.1016/j.epsr.2016.09.031
Mustafidah, H., Hartati, S., Wardoyo, R., & Harjoko, A. (2014). Selection of Most Appropriate Backpropagation Training Algorithm in Data Pattern Recognition. International Journal of Computer Trends and Technology, 14(2), 92-95. doi:10.14445/22312803/ijctt-v14p120
Godoy, W. F., da Silva, I. N., Lopes, T. D., Goedtel, A., & Palácios, R. H. C. (2016). Application of intelligent tools to detect and classify broken rotor bars in three-phase induction motors fed by an inverter. IET Electric Power Applications, 10(5), 430-439. doi:10.1049/iet-epa.2015.0469
Ghorbanian, V., & Faiz, J. (2015). A survey on time and frequency characteristics of induction motors with broken rotor bars in line-start and inverter-fed modes. Mechanical Systems and Signal Processing, 54-55, 427-456. doi:10.1016/j.ymssp.2014.08.022
Valles-Novo, R., de Jesus Rangel-Magdaleno, J., Ramirez-Cortes, J. M., Peregrina-Barreto, H., & Morales-Caporal, R. (2015). Empirical Mode Decomposition Analysis for Broken-Bar Detection on Squirrel Cage Induction Motors. IEEE Transactions on Instrumentation and Measurement, 64(5), 1118-1128. doi:10.1109/tim.2014.2373513
De Santiago-Perez, J. J., Rivera-Guillen, J. R., Amezquita-Sanchez, J. P., Valtierra-Rodriguez, M., Romero-Troncoso, R. J., & Dominguez-Gonzalez, A. (2018). Fourier transform and image processing for automatic detection of broken rotor bars in induction motors. Measurement Science and Technology, 29(9), 095008. doi:10.1088/1361-6501/aad3aa
Merabet, H., Bahi, T., Drici, D., Halam, N., & Bedoud, K. (2017). Diagnosis of rotor fault using neuro-fuzzy inference system. Journal of Fundamental and Applied Sciences, 9(1), 170. doi:10.4314/jfas.v9i1.12
Riera-Guasp, M., Pineda-Sanchez, M., Perez-Cruz, J., Puche-Panadero, R., Roger-Folch, J., & Antonino-Daviu, J. A. (2012). Diagnosis of Induction Motor Faults via Gabor Analysis of the Current in Transient Regime. IEEE Transactions on Instrumentation and Measurement, 61(6), 1583-1596. doi:10.1109/tim.2012.2186650
Gyftakis, K. N., Marques Cardoso, A. J., & Antonino-Daviu, J. A. (2017). Introducing the Filtered Park’s and Filtered Extended Park’s Vector Approach to detect broken rotor bars in induction motors independently from the rotor slots number. Mechanical Systems and Signal Processing, 93, 30-50. doi:10.1016/j.ymssp.2017.01.046
[-]