- -

Automatic Fault Diagnostic System for Induction Motors under Transient Regime Optimized with Expert Systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic Fault Diagnostic System for Induction Motors under Transient Regime Optimized with Expert Systems

Mostrar el registro completo del ítem

Burriel-Valencia, J.; Puche-Panadero, R.; Martinez-Roman, J.; Sapena-Bano, A.; Pineda-Sanchez, M.; Pérez-Cruz, J.; Riera-Guasp, M. (2019). Automatic Fault Diagnostic System for Induction Motors under Transient Regime Optimized with Expert Systems. Electronics. 8(1):1-16. https://doi.org/10.3390/electronics8010006

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140888

Ficheros en el ítem

Metadatos del ítem

Título: Automatic Fault Diagnostic System for Induction Motors under Transient Regime Optimized with Expert Systems
Autor: Burriel-Valencia, Jordi Puche-Panadero, Rubén Martinez-Roman, Javier Sapena-Bano, Angel Pineda-Sanchez, Manuel Pérez-Cruz, Juan Riera-Guasp, Martín
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica
Fecha difusión:
Resumen:
[EN] Induction machines (IMs) power most modern industrial processes (induction motors) and generate an increasing portion of our electricity (doubly fed induction generators). A continuous monitoring of the machine's ...[+]
Palabras clave: Fault diagnosis , Condition monitoring , Induction machines , Support vector machines , Expert systems , Neural networks
Derechos de uso: Reconocimiento (by)
Fuente:
Electronics. (eissn: 2079-9292 )
DOI: 10.3390/electronics8010006
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/electronics8010006
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-102175-B-I00/ES/DISEÑO DE MODELOS AVANZADOS DE SIMULACION DE AEROGENERADORES PARA EL DESARROLLO Y PUESTA A PUNTO DE SISTEMAS DE DIAGNOSTICO DE AVERIAS "ON-LINE"./
Tipo: Artículo

References

Puche-Panadero, R., Pineda-Sanchez, M., Riera-Guasp, M., Roger-Folch, J., Hurtado-Perez, E., & Perez-Cruz, J. (2009). Improved Resolution of the MCSA Method Via Hilbert Transform, Enabling the Diagnosis of Rotor Asymmetries at Very Low Slip. IEEE Transactions on Energy Conversion, 24(1), 52-59. doi:10.1109/tec.2008.2003207

Abd-el -Malek, M., Abdelsalam, A. K., & Hassan, O. E. (2017). Induction motor broken rotor bar fault location detection through envelope analysis of start-up current using Hilbert transform. Mechanical Systems and Signal Processing, 93, 332-350. doi:10.1016/j.ymssp.2017.02.014

Martinez, J., Belahcen, A., & Muetze, A. (2017). Analysis of the Vibration Magnitude of an Induction Motor With Different Numbers of Broken Bars. IEEE Transactions on Industry Applications, 53(3), 2711-2720. doi:10.1109/tia.2017.2657478 [+]
Puche-Panadero, R., Pineda-Sanchez, M., Riera-Guasp, M., Roger-Folch, J., Hurtado-Perez, E., & Perez-Cruz, J. (2009). Improved Resolution of the MCSA Method Via Hilbert Transform, Enabling the Diagnosis of Rotor Asymmetries at Very Low Slip. IEEE Transactions on Energy Conversion, 24(1), 52-59. doi:10.1109/tec.2008.2003207

Abd-el -Malek, M., Abdelsalam, A. K., & Hassan, O. E. (2017). Induction motor broken rotor bar fault location detection through envelope analysis of start-up current using Hilbert transform. Mechanical Systems and Signal Processing, 93, 332-350. doi:10.1016/j.ymssp.2017.02.014

Martinez, J., Belahcen, A., & Muetze, A. (2017). Analysis of the Vibration Magnitude of an Induction Motor With Different Numbers of Broken Bars. IEEE Transactions on Industry Applications, 53(3), 2711-2720. doi:10.1109/tia.2017.2657478

Sapena-Bano, A., Pineda-Sanchez, M., Puche-Panadero, R., Perez-Cruz, J., Roger-Folch, J., Riera-Guasp, M., & Martinez-Roman, J. (2015). Harmonic Order Tracking Analysis: A Novel Method for Fault Diagnosis in Induction Machines. IEEE Transactions on Energy Conversion, 30(3), 833-841. doi:10.1109/tec.2015.2416973

Sapena-Bano, A., Burriel-Valencia, J., Pineda-Sanchez, M., Puche-Panadero, R., & Riera-Guasp, M. (2017). The Harmonic Order Tracking Analysis Method for the Fault Diagnosis in Induction Motors Under Time-Varying Conditions. IEEE Transactions on Energy Conversion, 32(1), 244-256. doi:10.1109/tec.2016.2626008

Burriel-Valencia, J., Puche-Panadero, R., Martinez-Roman, J., Sapena-Bano, A., & Pineda-Sanchez, M. (2017). Short-Frequency Fourier Transform for Fault Diagnosis of Induction Machines Working in Transient Regime. IEEE Transactions on Instrumentation and Measurement, 66(3), 432-440. doi:10.1109/tim.2016.2647458

Yin, Z., & Hou, J. (2016). Recent advances on SVM based fault diagnosis and process monitoring in complicated industrial processes. Neurocomputing, 174, 643-650. doi:10.1016/j.neucom.2015.09.081

Bazan, G. H., Scalassara, P. R., Endo, W., Goedtel, A., Godoy, W. F., & Palácios, R. H. C. (2017). Stator fault analysis of three-phase induction motors using information measures and artificial neural networks. Electric Power Systems Research, 143, 347-356. doi:10.1016/j.epsr.2016.09.031

Mustafidah, H., Hartati, S., Wardoyo, R., & Harjoko, A. (2014). Selection of Most Appropriate Backpropagation Training Algorithm in Data Pattern Recognition. International Journal of Computer Trends and Technology, 14(2), 92-95. doi:10.14445/22312803/ijctt-v14p120

Godoy, W. F., da Silva, I. N., Lopes, T. D., Goedtel, A., & Palácios, R. H. C. (2016). Application of intelligent tools to detect and classify broken rotor bars in three-phase induction motors fed by an inverter. IET Electric Power Applications, 10(5), 430-439. doi:10.1049/iet-epa.2015.0469

Ghorbanian, V., & Faiz, J. (2015). A survey on time and frequency characteristics of induction motors with broken rotor bars in line-start and inverter-fed modes. Mechanical Systems and Signal Processing, 54-55, 427-456. doi:10.1016/j.ymssp.2014.08.022

Valles-Novo, R., de Jesus Rangel-Magdaleno, J., Ramirez-Cortes, J. M., Peregrina-Barreto, H., & Morales-Caporal, R. (2015). Empirical Mode Decomposition Analysis for Broken-Bar Detection on Squirrel Cage Induction Motors. IEEE Transactions on Instrumentation and Measurement, 64(5), 1118-1128. doi:10.1109/tim.2014.2373513

De Santiago-Perez, J. J., Rivera-Guillen, J. R., Amezquita-Sanchez, J. P., Valtierra-Rodriguez, M., Romero-Troncoso, R. J., & Dominguez-Gonzalez, A. (2018). Fourier transform and image processing for automatic detection of broken rotor bars in induction motors. Measurement Science and Technology, 29(9), 095008. doi:10.1088/1361-6501/aad3aa

Merabet, H., Bahi, T., Drici, D., Halam, N., & Bedoud, K. (2017). Diagnosis of rotor fault using neuro-fuzzy inference system. Journal of Fundamental and Applied Sciences, 9(1), 170. doi:10.4314/jfas.v9i1.12

Riera-Guasp, M., Pineda-Sanchez, M., Perez-Cruz, J., Puche-Panadero, R., Roger-Folch, J., & Antonino-Daviu, J. A. (2012). Diagnosis of Induction Motor Faults via Gabor Analysis of the Current in Transient Regime. IEEE Transactions on Instrumentation and Measurement, 61(6), 1583-1596. doi:10.1109/tim.2012.2186650

Gyftakis, K. N., Marques Cardoso, A. J., & Antonino-Daviu, J. A. (2017). Introducing the Filtered Park’s and Filtered Extended Park’s Vector Approach to detect broken rotor bars in induction motors independently from the rotor slots number. Mechanical Systems and Signal Processing, 93, 30-50. doi:10.1016/j.ymssp.2017.01.046

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem