- -

Ferromagnetic resonance in FeCoNi electroplated wires

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ferromagnetic resonance in FeCoNi electroplated wires

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García Miquel, Ángel Héctor es_ES
dc.contributor.author Bhagat, S.M. es_ES
dc.contributor.author Lofland, S.E. es_ES
dc.contributor.author Kurlyandskaya, G.V. es_ES
dc.contributor.author Svalov, A.V. es_ES
dc.date.accessioned 2020-04-17T12:49:47Z
dc.date.available 2020-04-17T12:49:47Z
dc.date.issued 2003 es_ES
dc.identifier.issn 0021-8979 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140894
dc.description.abstract [EN] We have investigated the microwave properties (ferromagnetic resonance and ferromagnetic antiresonance) of FeCoNi magnetic tubes created by electroplating on CuBe wire. Important parameters such as the g factor, magnetization, anisotropy field, and damping parameter were obtained from the measurements. One sample, prepared by a method which entails rf-sputtering deposition of an additional FeNi layer, shows a clear ferromagnetic antiresonance. (C) 2003 American Institute of Physics. es_ES
dc.description.sponsorship This work was partially supported by Spanish Secretaria de Estado de Educación y Universidades, Generalitat Valenciana under Project No. CTIDIA/2002/50, Spanish CICyT under Grant No. MAT2000-1047, Award No. Rec-005 of the U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union (CRDF). One of the authors (G.V.K.) thanks Spanish MCyT for her Ramon and Cajal Fellowship. The authors thank Professor V. O. Vas kovskiy for his help. es_ES
dc.language Inglés es_ES
dc.publisher American Institute of Physics es_ES
dc.relation.ispartof Journal of Applied Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Ferromagnetic resonance in FeCoNi electroplated wires es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.1590407 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICYT//MAT2000-1047/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CRDF//Rec-005/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//CTIDIA2002-50/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation García Miquel, ÁH.; Bhagat, S.; Lofland, S.; Kurlyandskaya, G.; Svalov, A. (2003). Ferromagnetic resonance in FeCoNi electroplated wires. Journal of Applied Physics. 94(3):1868-1872. https://doi.org/10.1063/1.1590407 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1063/1.1590407 es_ES
dc.description.upvformatpinicio 1868 es_ES
dc.description.upvformatpfin 1872 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 94 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\24473 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Ciencia y Tecnología es_ES
dc.contributor.funder Comisión Interministerial de Ciencia y Tecnología es_ES
dc.contributor.funder U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union es_ES
dc.description.references Sixtus, K. J., & Tonks, L. (1932). Propagation of Large Barkhausen Discontinuities. II. Physical Review, 42(3), 419-435. doi:10.1103/physrev.42.419 es_ES
dc.description.references Panina, L. V., & Mohri, K. (1994). Magneto‐impedance effect in amorphous wires. Applied Physics Letters, 65(9), 1189-1191. doi:10.1063/1.112104 es_ES
dc.description.references Vázquez, M., & Hernando, A. (1996). A soft magnetic wire for sensor applications. Journal of Physics D: Applied Physics, 29(4), 939-949. doi:10.1088/0022-3727/29/4/001 es_ES
dc.description.references Britel, M. R., Ménard, D., Melo, L. G., Ciureanu, P., Yelon, A., Cochrane, R. W., … Cornut, B. (2000). Magnetoimpedance measurements of ferromagnetic resonance and antiresonance. Applied Physics Letters, 77(17), 2737-2739. doi:10.1063/1.1320042 es_ES
dc.description.references Garcı́a-Miquel, H., Garcı́a, J. ., Garcı́a-Beneytez, J. ., & Vázquez, M. (2001). Surface magnetic anisotropy in glass-coated amorphous microwires as determined from ferromagnetic resonance measurements. Journal of Magnetism and Magnetic Materials, 231(1), 38-44. doi:10.1016/s0304-8853(01)00040-3 es_ES
dc.description.references Wiggins, J., Srikanth, H., Wang, K.-Y., Spinu, L., & Tang, J. (2000). Magneto-impedance of glass-coated Fe–Ni–Cu microwires. Journal of Applied Physics, 87(9), 4810-4812. doi:10.1063/1.373167 es_ES
dc.description.references Pirota, K. ., Kraus, L., Chiriac, H., & Knobel, M. (2000). Magnetic properties and giant magnetoimpedance in a CoFeSiB glass-covered microwire. Journal of Magnetism and Magnetic Materials, 221(3), L243-L247. doi:10.1016/s0304-8853(00)00554-0 es_ES
dc.description.references Antonov, A. S., Buznikov, N. A., Iakubov, I. T., Lagarkov, A. N., & Rakhmanov, A. L. (2001). Nonlinear magnetization reversal of Co-based amorphous microwires induced by an ac current. Journal of Physics D: Applied Physics, 34(5), 752-757. doi:10.1088/0022-3727/34/5/314 es_ES
dc.description.references Gay-Balmaz, P., Maccio, C., & Martin, O. J. F. (2002). Microwire arrays with plasmonic response at microwave frequencies. Applied Physics Letters, 81(15), 2896-2898. doi:10.1063/1.1513663 es_ES
dc.description.references Beach, R. S., Smith, N., Platt, C. L., Jeffers, F., & Berkowitz, A. E. (1996). Magneto‐impedance effect in NiFe plated wire. Applied Physics Letters, 68(19), 2753-2755. doi:10.1063/1.115587 es_ES
dc.description.references Kurlyandskaya, G. V., Barandiarán, J. M., Gutiérrez, J., Garcı́a, D., Vázquez, M., & Vas’kovskiy, V. O. (1999). Magnetoimpedance effect in CoFeNi plated wire with ac field annealing destabilized domain structure. Journal of Applied Physics, 85(8), 5438-5440. doi:10.1063/1.369968 es_ES
dc.description.references Garcia, J. ., Asenjo, A., Sinnecker, J. ., & Vazquez, M. (2000). Correlation between GMI effect and domain structure in electrodeposited Co–P tubes. Journal of Magnetism and Magnetic Materials, 215-216, 352-354. doi:10.1016/s0304-8853(00)00156-6 es_ES
dc.description.references Yu, R. H., Landry, G., Li, Y. F., Basu, S., & Xiao, J. Q. (2000). Magneto-impedance effect in soft magnetic tubes. Journal of Applied Physics, 87(9), 4807-4809. doi:10.1063/1.373166 es_ES
dc.description.references Kurlyandskaya, G. ., Garcı́a-Miquel, H., Vázquez, M., Svalov, A. ., & Vas’kovskiy, V. . (2002). Longitudinal magnetic bistability of electroplated wires. Journal of Magnetism and Magnetic Materials, 249(1-2), 34-38. doi:10.1016/s0304-8853(02)00500-0 es_ES
dc.description.references Kurlyandskaya, G. V., Yakabchuk, H., Kisker, E., Bebenin, N. G., Garcı́a-Miquel, H., Vázquez, M., & Vas’kovskiy, V. O. (2001). Very large magnetoimpedance effect in FeCoNi ferromagnetic tubes with high order magnetic anisotropy. Journal of Applied Physics, 90(12), 6280-6286. doi:10.1063/1.1418423 es_ES
dc.description.references Favieres, C., Aroca, C., Sánchez, M. C., & Madurga, V. (2000). Matteucci effect as exhibited by cylindrical CoP amorphous multilayers. Journal of Applied Physics, 87(4), 1889-1898. doi:10.1063/1.372109 es_ES
dc.description.references Lofland, S. E., Garcia-Miquel, H., Vazquez, M., & Bhagat, S. M. (2002). Microwave magnetoabsorption in glass-coated amorphous microwires with radii close to skin depth. Journal of Applied Physics, 92(4), 2058-2063. doi:10.1063/1.1494847 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem