- -

Atrane complexes chemistry as a tool for obtaining trimodal UVM-7-like porous silica

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Atrane complexes chemistry as a tool for obtaining trimodal UVM-7-like porous silica

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Garrido, María Dolores es_ES
dc.contributor.author García-Llacer, C. es_ES
dc.contributor.author El Haskouri, Jamal es_ES
dc.contributor.author Marcos Martínez, María Dolores es_ES
dc.contributor.author Sánchez-Royo, J. F. es_ES
dc.contributor.author Beltrán, Aurelio es_ES
dc.contributor.author Amorós, P. es_ES
dc.date.accessioned 2020-04-17T12:49:56Z
dc.date.available 2020-04-17T12:49:56Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0095-8972 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140900
dc.description This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of Coordination Chemistry on 2018, available online: http://www.tandfonline.com/10.1080/00958972.2018.1442002 es_ES
dc.description.abstract [EN] The use of atrane complexes as hydrolytic precursors enables the homogeneous incorporation of manganese (25Si/Mn48) throughout the porous walls of the nanoparticles of a surfactant-templated bimodal mesoporous silica (UVM-7). The subsequent leaching of the manganese nanodomains allows adding controlled microporosity to the host silica framework. The resulting final silica material presents three pore systems structured at different length scales: interparticle textural-type macroporosity (ca. 43.2nm), ordered intraparticle mesoporosity (ca. 2.63nm; after template removal), and well-dispersed microporosity (< 2nm; as consequence of the lixiviation of the Mn-rich domains). The good dispersion of the guest element (Mn) in the silica intermediate provided by the atrane route is responsible for the disordered but regular microporosity achieved. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministerio de Economia y Competitividad and the European Feder Funds [grant number MAT2015-64139-C4-2-R]. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Journal of Coordination Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Atrane complexes es_ES
dc.subject Silica es_ES
dc.subject Mesoporous es_ES
dc.subject Microporous es_ES
dc.subject Etching es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.title Atrane complexes chemistry as a tool for obtaining trimodal UVM-7-like porous silica es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/00958972.2018.1442002 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-64139-C4-2-R/ES/SOLIDOS MESOPOROSOS Y PARTICULADOS PARA EL DISEÑO DE MATERIALES TERANOSTICOS/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Garrido, MD.; García-Llacer, C.; El Haskouri, J.; Marcos Martínez, MD.; Sánchez-Royo, JF.; Beltrán, A.; Amorós, P. (2018). Atrane complexes chemistry as a tool for obtaining trimodal UVM-7-like porous silica. Journal of Coordination Chemistry. 71(6):776-785. https://doi.org/10.1080/00958972.2018.1442002 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/00958972.2018.1442002 es_ES
dc.description.upvformatpinicio 776 es_ES
dc.description.upvformatpfin 785 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 71 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\363873 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Puri, J. K., Singh, R., & Chahal, V. K. (2011). Silatranes: a review on their synthesis, structure, reactivity and applications. Chem. Soc. Rev., 40(3), 1791-1840. doi:10.1039/b925899j es_ES
dc.description.references Glowacki, B., Lutter, M., Alnasr, H., Seymen, R., Hiller, W., & Jurkschat, K. (2017). Introducing Stereogenic Centers to Group XIV Metallatranes. Inorganic Chemistry, 56(9), 4937-4949. doi:10.1021/acs.inorgchem.6b03126 es_ES
dc.description.references Mylonas-Margaritis, I., Mayans, J., Sakellakou, S.-M., P. Raptopoulou, C., Psycharis, V., Escuer, A., & P. Perlepes, S. (2017). Using the Singly Deprotonated Triethanolamine to Prepare Dinuclear Lanthanide(III) Complexes: Synthesis, Structural Characterization and Magnetic Studies. Magnetochemistry, 3(1), 5. doi:10.3390/magnetochemistry3010005 es_ES
dc.description.references Dumitriu, A.-M.-C., Cazacu, M., Bargan, A., Shova, S., & Turta, C. (2013). Cu(II) and Ni(II) complexes with a tri-, tetra- or hexadentate triethanolamine ligand: Structural characterization and properties. Polyhedron, 50(1), 255-263. doi:10.1016/j.poly.2012.11.009 es_ES
dc.description.references Voronkov, M. G. (1966). Silatranes: Intra-complex heterocyclic compounds of pentacordinated silicon. Pure and Applied Chemistry, 13(1-2), 35-60. doi:10.1351/pac196613010035 es_ES
dc.description.references Verkade, J. G. (1994). Main group atranes: chemical and structural features. Coordination Chemistry Reviews, 137, 233-295. doi:10.1016/0010-8545(94)03007-d es_ES
dc.description.references Voronkov, M. G., & Baryshok, V. P. (2010). Atranes as a new generation of biologically active substances. Herald of the Russian Academy of Sciences, 80(6), 514-521. doi:10.1134/s1019331610060079 es_ES
dc.description.references Gudat, D. (2017). The scientific work of John G. Verkade—A retrospect. Phosphorus, Sulfur, and Silicon and the Related Elements, 192(3), 255-258. doi:10.1080/10426507.2017.1273643 es_ES
dc.description.references Cabrera, S., El Haskouri, J., Guillem, C., Latorre, J., Beltrán-Porter, A., Beltrán-Porter, D., … Amorós *, P. (2000). Generalised syntheses of ordered mesoporous oxides: the atrane route. Solid State Sciences, 2(4), 405-420. doi:10.1016/s1293-2558(00)00152-7 es_ES
dc.description.references Soler-Illia, G. J. de A. A., Sanchez, C., Lebeau, B., & Patarin, J. (2002). Chemical Strategies To Design Textured Materials:  from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures. Chemical Reviews, 102(11), 4093-4138. doi:10.1021/cr0200062 es_ES
dc.description.references El Haskouri, J., Morales, J. M., Ortiz de Zárate, D., Fernández, L., Latorre, J., Guillem, C., … Amorós, P. (2008). Nanoparticulated Silicas with Bimodal Porosity: Chemical Control of the Pore Sizes. Inorganic Chemistry, 47(18), 8267-8277. doi:10.1021/ic800893a es_ES
dc.description.references Puértolas, B., Mayoral, Á., Arenal, R., Solsona, B., Moragues, A., Murcia-Mascaros, S., … García, T. (2015). High-Temperature Stable Gold Nanoparticle Catalysts for Application under Severe Conditions: The Role of TiO2 Nanodomains in Structure and Activity. ACS Catalysis, 5(2), 1078-1086. doi:10.1021/cs501741u es_ES
dc.description.references Advanced Materials. (s. f.). doi:10.1002/(issn)1521-4095 es_ES
dc.description.references Burguete, P., Beltrán, A., Guillem, C., Latorre, J., Pérez-Pla, F., Beltrán, D., & Amorós, P. (2012). Pore Length Effect on Drug Uptake and Delivery by Mesoporous Silicas. ChemPlusChem, 77(9), 817-831. doi:10.1002/cplu.201200099 es_ES
dc.description.references Tortajada, M., Ramón, D., Beltrán, D., & Amorós, P. (2005). Hierarchical bimodal porous silicas and organosilicas for enzyme immobilization. Journal of Materials Chemistry, 15(35-36), 3859. doi:10.1039/b504605j es_ES
dc.description.references Pérez-Cabero, M., Hungría, A. B., Morales, J. M., Tortajada, M., Ramón, D., Moragues, A., … Amorós, P. (2012). Interconnected mesopores and high accessibility in UVM-7-like silicas. Journal of Nanoparticle Research, 14(8). doi:10.1007/s11051-012-1045-8 es_ES
dc.description.references Rolison, D. R. (2003). Catalytic Nanoarchitectures--the Importance of Nothing and the Unimportance of Periodicity. Science, 299(5613), 1698-1701. doi:10.1126/science.1082332 es_ES
dc.description.references Yang, X.-Y., Chen, L.-H., Li, Y., Rooke, J. C., Sanchez, C., & Su, B.-L. (2017). Hierarchically porous materials: synthesis strategies and structure design. Chemical Society Reviews, 46(2), 481-558. doi:10.1039/c6cs00829a es_ES
dc.description.references Huerta, L., Guillem, C., Latorre, J., Beltrán, A., Martínez-Máñez, R., Marcos, M. D., … Amorós, P. (2006). Bases for the synthesis of nanoparticulated silicas with bimodal hierarchical porosity. Solid State Sciences, 8(8), 940-951. doi:10.1016/j.solidstatesciences.2006.02.038 es_ES
dc.description.references Nightingale, E. R. (1959). Rapid Spectrophotometric Determination of Manganese. Triethanolamine and Peroxide Complexes of Manganese(III). Analytical Chemistry, 31(1), 146-148. doi:10.1021/ac60145a036 es_ES
dc.description.references Klepetář, J., & Štulík, K. (1974). The composition, stability, and the electrochemical behaviour of the manganese(III) complex with triethanolamine. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 55(2), 255-261. doi:10.1016/s0022-0728(74)80125-7 es_ES
dc.description.references Flaschka, H. A., & Hornstein, J. V. (1978). Determination of manganese with triethanolamine and o-tolidine by conventional and long-path photometry. Analytica Chimica Acta, 100, 469-477. doi:10.1016/s0003-2670(01)93341-0 es_ES
dc.description.references Andruh, M., Hübner, K., Noltemeyer, M., & Roesky, H. W. (1993). Syntheses and Structures of Three Mononuclear Coordination Compounds Containing Six- and Seven-Coordinated Manganese(II) Ions. Zeitschrift für Naturforschung B, 48(5), 591-597. doi:10.1515/znb-1993-0508 es_ES
dc.description.references Masoud, M. S., Abou El-Enein, S. A., Motaweh, H. A., & Ali, A. E. (2004). Thermal and electrical conductivity properties of some CrIII, MnIIand amino alcohol complexes. Journal of Thermal Analysis and Calorimetry, 75(1), 51-61. doi:10.1023/b:jtan.0000017327.45144.9a es_ES
dc.description.references Fernandez, L., Viruela-Martin, P., Latorre, J., Guillem, C., Beltrán, A., & Amorós, P. (2007). Molecular precursors of mesostructured silica materials in the atrane route: A DFT/GIAO/NBO theoretical study. Journal of Molecular Structure: THEOCHEM, 822(1-3), 89-102. doi:10.1016/j.theochem.2007.07.022 es_ES
dc.description.references Serrano, D. P., Escola, J. M., & Pizarro, P. (2013). Synthesis strategies in the search for hierarchical zeolites. Chem. Soc. Rev., 42(9), 4004-4035. doi:10.1039/c2cs35330j es_ES
dc.description.references Mitchell, S., Pinar, A. B., Kenvin, J., Crivelli, P., Kärger, J., & Pérez-Ramírez, J. (2015). Structural analysis of hierarchically organized zeolites. Nature Communications, 6(1). doi:10.1038/ncomms9633 es_ES
dc.description.references Kresge, C. T., & Roth, W. J. (2013). The discovery of mesoporous molecular sieves from the twenty year perspective. Chemical Society Reviews, 42(9), 3663. doi:10.1039/c3cs60016e es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem