- -

CNNs for Automatic Glaucoma Assessment using Fundus Images: An Extensive Validation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

CNNs for Automatic Glaucoma Assessment using Fundus Images: An Extensive Validation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Díaz-Pinto, Andrés Yesid es_ES
dc.contributor.author Morales, Sandra es_ES
dc.contributor.author Naranjo Ornedo, Valeriana es_ES
dc.contributor.author Köhler, Thomas es_ES
dc.contributor.author Mossi García, José Manuel es_ES
dc.contributor.author Navea, Amparo es_ES
dc.date.accessioned 2020-04-17T12:50:02Z
dc.date.available 2020-04-17T12:50:02Z
dc.date.issued 2019-03-20 es_ES
dc.identifier.issn 1475-925X es_ES
dc.identifier.uri http://hdl.handle.net/10251/140902
dc.description.abstract [EN] Background: Most current algorithms for automatic glaucoma assessment using fundus images rely on handcrafted features based on segmentation, which are affected by the performance of the chosen segmentation method and the extracted features. Among other characteristics, Convolutional Neural Networks (CNNs) are known because of their ability to learn highly discriminative features from raw pixel intensities. Methods: In this paper, we employed five different ImageNet-trained models (VGG16, VGG19, InceptionV3, ResNet50 and Xception) for automatic glaucoma assessment using fundus images. Results from an extensive validation using cross-validation and cross-testing strategies were compared with previous works in the literature. Results: Using five public databases (1707 images), an average AUC of 0.9605 with a 95% confidence interval of 95.92% - 97.07%, an average specificity of 0.8580 and an average sensitivity of 0.9346 were obtained after using the Xception architecture, significantly improving the performance of other state-of-the-art works. Moreover, a new clinical database, ACRIMA, has been made publicly available, containing 705 labelled images. It is composed of 396 glaucomatous images and 309 normal images, which means, the largest public database for glaucoma diagnosis. The high specificity and sensitivity obtained from the proposed approach are supported by an extensive validation using not only the cross-validation strategy but also the cross-testing validation on, to the best of the authors' knowledge, all publicly available glaucoma-labelled databases. Conclusions:These results suggest that using ImageNet-trained models is a robust alternative for automatic glaucoma screening system. All images, CNN weights and software used to fine-tune and test the five CNNs are publicly available, which could be used as a testbed for further comparisons. es_ES
dc.description.sponsorship This work was supported by the Ministerio de Economia y Competitividad of Spain, Project ACRIMA [TIN2013-46751-R] and the Project GALAHAD [H2020-ICT-2016-2017, 732613]. In particular, the work of Andres Diaz-Pinto has been supported by the Generalitat Valenciana under the scholarship Santiago Grisolia [GRISOLIA/2015/027]. (Corresponding author: Andres Diaz-Pinto). We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan V GPU used for this research. es_ES
dc.language Inglés es_ES
dc.publisher Springer (Biomed Central Ltd.) es_ES
dc.relation.ispartof BioMedical Engineering OnLine es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Glaucoma es_ES
dc.subject ACRIMA database es_ES
dc.subject Fundus Images es_ES
dc.subject CNN es_ES
dc.subject Fine-Tuning es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title CNNs for Automatic Glaucoma Assessment using Fundus Images: An Extensive Validation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s12938-019-0649-y es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/732613/EU/Glaucoma – Advanced, LAbel-free High resolution Automated OCT Diagnostics/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GRISOLIA%2F2015%2F027/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2013-46751-R/ES/ANALISIS DE IMAGEN DE FONDO DE OJO PARA CRIBADO AUTOMATICO DE ENFERMEDADES OFTALMOLOGICAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Díaz-Pinto, AY.; Morales, S.; Naranjo Ornedo, V.; Köhler, T.; Mossi García, JM.; Navea, A. (2019). CNNs for Automatic Glaucoma Assessment using Fundus Images: An Extensive Validation. BioMedical Engineering OnLine. 18(29):1-19. https://doi.org/10.1186/s12938-019-0649-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s12938-019-0649-y es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 29 es_ES
dc.relation.pasarela S\377542 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.description.references World Health Organization. Bulletin of the World Health Organization, Vol 82(11). 2004. http://www.who.int/bulletin/volumes/82/11/en/infocus.pdf?ua=1 . Accessed 5 May 2016. es_ES
dc.description.references Bourne RRA. Worldwide glaucoma through the looking glass. Br J Ophthalmol. 2006;90:253–4. https://doi.org/10.1136/bjo.2005.083527 . es_ES
dc.description.references Bock R, Meier J, Nyúl LG, Hornegger J, Michelson G. Glaucoma risk index: automated glaucoma detection from color fundus images. Med Image Anal. 2010;14:471–81. https://doi.org/10.1016/j.media.2009.12.006 . es_ES
dc.description.references Sivaswamy J, Krishnadas SR, Joshi GD, Jain M, Ujjwal A, ST Drishti. Retinal image dataset for optic nerve head (ONH) segmentation. In: 2014 IEEE 11th international symposium on biomedical imaging (ISBI). 2014, p. 53–6. https://doi.org/10.1109/ISBI.2014.6867807 . es_ES
dc.description.references Morales S, Naranjo V, Angulo J, Alcañiz M. Automatic detection of optic disc based on PCA and mathematical morphology. IEEE Trans Med Imag. 2013;32:786–96. https://doi.org/10.1109/TMI.2013.2238244 . es_ES
dc.description.references Wong DWK, Liu J, Lim JH, Jia X, Yin F, Li H, Wong TY. Level-set based automatic cup-to-disc ratio determination using retinal fundus images in ARGALI. In: 30th Annual International IEEE EMBS Conference, vol. 30. 2008, p. 2266–9. https://doi.org/10.1109/IEMBS.2008.4649648 . es_ES
dc.description.references Joshi GD, Sivaswamy J, Krishnadas SR. Optic disk and cup segmentation from monocular color retinal images for glaucoma assessment. IEEE Trans Med Imag. 2011;30:1192–205. https://doi.org/10.1109/TMI.2011.2106509 . es_ES
dc.description.references Yin F, Liu J, Wong DWK, Tan NM, Cheung C, Baskaran M, Aung T, Wong TY. Automated segmentation of optic disc and optic cup in fundus images for glaucoma diagnosis. In: 2012 25th IEEE international symposium on computer-based medical systems (CBMS). 2012, p. 1–6. https://doi.org/10.1109/CBMS.2012.6266344 . es_ES
dc.description.references Cheng J, Liu J, Xu Y, Yin F, Wong DWK, Tan N-M, Tao D, Cheng C-Y, Aung T, Wong TY. Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. In: IEEE transactions on medical imaging, vol. 32. 2013, p. 1019–32. https://doi.org/10.1109/TMI.2013.2247770 . es_ES
dc.description.references Diaz-Pinto A, Morales S, Naranjo V, Alcocer P, Lanzagorta A. Glaucoma diagnosis by means of optic cup feature analysis in color fundus images. In: 24th European signal processing conference (EUSIPCO), vol. 24. 2016, p. 2055–9. https://doi.org/10.1109/EUSIPCO.2016.7760610 . es_ES
dc.description.references Liu J, Zhang Z, Wong DWK, Xu Y, Yin F, Cheng J, Tan NM, Kwoh CK, Xu D, Tham YC, Aung T, Wong TY. Automatic glaucoma diagnosis through medical imaging informatics. J Am Med Inf Assoc. 2013;1:1021–7. https://doi.org/10.1136/amiajnl-2012-001336 . es_ES
dc.description.references LeCun Y. Generalization and network design strategies., Technical Report CRG-TR-89-4, University of TorontoNew York: Elsevier; 1989. es_ES
dc.description.references Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei L. ImageNet large scale visual recognition challenge. Int J Comput Vis. 2015;115(3):211–52. https://doi.org/10.1007/s11263-015-0816-y . es_ES
dc.description.references Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15:1929–58. es_ES
dc.description.references Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 2014. ArXiv e-prints arxiv:abs/1409.1556 . es_ES
dc.description.references Carneiro G, Nascimento J, Bradley AP. In: Navab N, Hornegger J, Wells WM, Frangi AF, eds. Unregistered multiview mammogram analysis with pre-trained deep learning models. 2015, p. 652–60. Cham: Springer. https://doi.org/10.1007/978-3-319-24574-4_78 . es_ES
dc.description.references Chen H, Ni D, Qin J, Li S, Yang X, Wang T, Heng PA. Standard plane localization in fetal ultrasound via domain transferred deep neural networks. IEEE J Biomed Health Inf. 2015;19(5):1627–36. https://doi.org/10.1109/JBHI.2015.2425041 . es_ES
dc.description.references Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, Liang J. Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imag. 2016;35(5):1299–312. https://doi.org/10.1109/TMI.2016.2535302 . es_ES
dc.description.references Yaniv B, Idit D, Lior W, Hayit G. Deep learning with non-medical training used for chest pathology identification. In: Proceedings of SPIE 9414, medical imaging 2015: computer-aided diagnosis. 2015, p. 94140–7. https://doi.org/10.1117/12.2083124 . es_ES
dc.description.references Razavian AS, Azizpour H, Sullivan J, Carlsson S. CNN features off-the-shelf: an astounding baseline for recognition. 2014. arXiv e-prints arxiv:abs/1403.6382 . es_ES
dc.description.references Chen X, Xu Y, Wong DWK, Wong TY, Liu J. Glaucoma detection based on deep convolutional neural network. In: 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC). 2015, p. 715–8. https://doi.org/10.1109/EMBC.2015.7318462 . es_ES
dc.description.references Alghamdi HS, Tang HL, A.Waheeb S, Peto T. Automatic optic disc abnormality detection in fundus images: a deep learning approach. In: OMIA3 (MICCAI 2016). 2016, p. 17–24. https://doi.org/10.17077/omia.1042 . es_ES
dc.description.references Abbas Q. Glaucoma-deep: detection of glaucoma eye disease on retinal fundus images using deep learning. Int J Adv Comput Sci Appl. 2017;8(6):41–5. https://doi.org/10.14569/IJACSA.2017.080606 . es_ES
dc.description.references Orlando JI, Prokofyeva E, del Fresno M, Blaschko MB. Convolutional neural network transfer for automated glaucoma identification. In: SPIE proceedings. 2017, p. 10160–10. https://doi.org/10.1117/12.2255740 . es_ES
dc.description.references Budai A, Bock R, Maier A, Hornegger J, Michelson G. Robust vessel segmentation in fundus images. Int J Biomed Imag. 2013. https://doi.org/10.1155/2013/154860 . es_ES
dc.description.references Fumero F, Alayon S, Sanchez JL, Sigut J, Gonzalez-Hernandez M. RIM-ONE: an open retinal image database for optic nerve evaluation. In: 2011 24th international symposium on computer-based medical systems (CBMS). 2011, p. 1–6. https://doi.org/10.1109/CBMS.2011.5999143 . es_ES
dc.description.references sjchoi86: sjchoi86-HRF Database. GitHub. 2017. Accessed 2 Feb 2017. es_ES
dc.description.references Chollet F, et al. Keras. GitHub. 2015. Accessed 21 Feb 2017. es_ES
dc.description.references Xu P, Wan C, Cheng J, Niu D, Liu J. Optic disc detection via deep learning in fundus images. Fetal, infant and ophthalmic medical image analysis. Cham: Springer; 2017. p. 134–41. es_ES
dc.description.references Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR). 2015, p. 1–9. https://doi.org/10.1109/CVPR.2015.7298594 . es_ES
dc.description.references Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. In: The IEEE conference on computer vision and pattern recognition (CVPR). 2016, p. 2818–26. es_ES
dc.description.references He K, Zhang X, Ren S, Sun J Deep residual learning for image recognition. In: The IEEE conference on computer vision and pattern recognition (CVPR). 2016. es_ES
dc.description.references Chollet F. Xception: Deep learning with depthwise separable convolutions. ArXiv e-prints. 2016. arxiv:abs/1610.02357 . es_ES
dc.description.references Hastie T, Tibshirani R, Friedman J. The elements of statistical learning. Cham: Springer; 2009. https://doi.org/10.1007/978-0-387-84858-7 . es_ES
dc.description.references Mason SJ, Graham NE. Areas beneath the relative operating characteristics (roc) and relative operating levels (rol) curves: statistical significance and interpretation. Q J R Meteorol Soc. 2002. https://doi.org/10.1256/003590002320603584 . es_ES
dc.description.references Mann HB, Whitney DR. On a test of whether one of two random variables is stochastically larger than the other. Ann Math Statist. 1947;18(1):50–60. https://doi.org/10.1214/aoms/1177730491 . es_ES
dc.description.references Chakravarty A, Sivaswamy J Glaucoma classification with a fusion of segmentation and image-based features. In: 2016 IEEE 13th international symposium on biomedical imaging (ISBI). 2016, p. 689–92. https://doi.org/10.1109/ISBI.2016.7493360 . es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem