- -

Automatic Adaptation of Basal Insulin using Sensor-augmented Pump Therapy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic Adaptation of Basal Insulin using Sensor-augmented Pump Therapy

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Herrero, Pau es_ES
dc.contributor.author Bondía Company, Jorge es_ES
dc.contributor.author Giménez, M. es_ES
dc.contributor.author Oliver, Nick es_ES
dc.contributor.author Georgiou, Pantelis es_ES
dc.date.accessioned 2020-04-17T12:50:05Z
dc.date.available 2020-04-17T12:50:05Z
dc.date.issued 2018-03-01 es_ES
dc.identifier.issn 1932-2968 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140904
dc.description.abstract [EN] Background: People with insulin-dependent diabetes rely on an intensified insulin regimen. Despite several guidelines, they are usually impractical and fall short in achieving optimal glycemic outcomes. In this work, a novel technique for automatic adaptation of the basal insulin profile of people with diabetes on sensor-augmented pump therapy is presented. Methods: The presented technique is based on a run-to-run control law that overcomes some of the limitations of previously proposed methods. To prove its validity, an in silico validation was performed. Finally, the artificial intelligence technique of case-based reasoning is proposed as a potential solution to deal with variability in basal insulin requirements. Results: Over a period of 4 months, the proposed run-to-run control law successfully adapts the basal insulin profile of a virtual population (10 adults, 10 adolescents, and 10 children). In particular, average percentage time in target [70, 180] mg/dl was significantly improved over the evaluated period (first week versus last week): 70.9 ± 11.8 versus 91.1 ± 4.4 (adults), 46.5 ± 11.9 versus 80.1 ± 10.9 (adolescents), 49.4 ± 12.9 versus 73.7 ± 4.1 (children). Average percentage time in hypoglycemia (<70 mg/dl) was also significantly reduced: 9.7 ± 6.6 versus 0.9 ± 1.2 (adults), 10.5 ± 8.3 versus 0.83 ± 1.0 (adolescents), 10.9 ± 6.1 versus 3.2 ± 3.5 (children). When compared against an existing technique over the whole evaluated period, the presented approach achieved superior results on percentage of time in hypoglycemia: 3.9 ± 2.6 versus 2.6 ± 2.2 (adults), 2.9 ± 1.9 versus 2.0 ± 1.5 (adolescents), 4.6 ± 2.8 versus 3.5 ± 2.0 (children), without increasing the percentage time in hyperglycemia. Conclusion: The present study shows the potential of a novel technique to effectively adjust the basal insulin profile of a type 1 diabetes population on sensor-augmented insulin pump therapy. es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This project has received funding from the European Union s Horizon 2020 research and innovation program under grant agreement 689810. es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof Journal of Diabetes Science and Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Type 1 diabetes es_ES
dc.subject Basal insulin es_ES
dc.subject Adaptive control es_ES
dc.subject Artificial intelligence es_ES
dc.subject Run-to-run es_ES
dc.subject Case-based reasoning es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Automatic Adaptation of Basal Insulin using Sensor-augmented Pump Therapy es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1932296818761752 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/689810/EU/Patient Empowerment through Predictive PERsonalised decision support/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Herrero, P.; Bondía Company, J.; Giménez, M.; Oliver, N.; Georgiou, P. (2018). Automatic Adaptation of Basal Insulin using Sensor-augmented Pump Therapy. Journal of Diabetes Science and Technology. 12(2):282-294. https://doi.org/10.1177/1932296818761752 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/1932296818761752 es_ES
dc.description.upvformatpinicio 282 es_ES
dc.description.upvformatpfin 294 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 2 es_ES
dc.identifier.pmid 29493359 es_ES
dc.relation.pasarela S\386380 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Daneman, D. (2006). Type 1 diabetes. The Lancet, 367(9513), 847-858. doi:10.1016/s0140-6736(06)68341-4 es_ES
dc.description.references Pickup, J. C. (2012). Management of diabetes mellitus: is the pump mightier than the pen? Nature Reviews Endocrinology, 8(7), 425-433. doi:10.1038/nrendo.2012.28 es_ES
dc.description.references Davidson, P., Hebblewhite, H., Steed, R., & Bode, B. (2008). Analysis of Guidelines for Basal-Bolus Insulin Dosing: Basal Insulin, Correction Factor, and Carbohydrate-to-Insulin Ratio. Endocrine Practice, 14(9), 1095-1101. doi:10.4158/ep.14.9.1095 es_ES
dc.description.references Walsh, J., Roberts, R., & Bailey, T. (2011). Guidelines for Optimal Bolus Calculator Settings in Adults. Journal of Diabetes Science and Technology, 5(1), 129-135. doi:10.1177/193229681100500118 es_ES
dc.description.references Schmidt, S., & Nørgaard, K. (2014). Bolus Calculators. Journal of Diabetes Science and Technology, 8(5), 1035-1041. doi:10.1177/1932296814532906 es_ES
dc.description.references Wilinska, M. E., Chassin, L. J., Schaller, H. C., Schaupp, L., Pieber, T. R., & Hovorka, R. (2005). Insulin Kinetics in Type-1 Diabetes: Continuous and Bolus Delivery of Rapid Acting Insulin. IEEE Transactions on Biomedical Engineering, 52(1), 3-12. doi:10.1109/tbme.2004.839639 es_ES
dc.description.references Zisser, H., Robinson, L., Bevier, W., Dassau, E., Ellingsen, C., Doyle, F. J., & Jovanovic, L. (2008). Bolus Calculator: A Review of Four «Smart» Insulin Pumps. Diabetes Technology & Therapeutics, 10(6), 441-444. doi:10.1089/dia.2007.0284 es_ES
dc.description.references León-Vargas, F., Garelli, F., De Battista, H., & Vehí, J. (2013). Postprandial blood glucose control using a hybrid adaptive PD controller with insulin-on-board limitation. Biomedical Signal Processing and Control, 8(6), 724-732. doi:10.1016/j.bspc.2013.06.008 es_ES
dc.description.references Toffanin, C., Zisser, H., Doyle, F. J., & Dassau, E. (2013). Dynamic Insulin on Board: Incorporation of Circadian Insulin Sensitivity Variation. Journal of Diabetes Science and Technology, 7(4), 928-940. doi:10.1177/193229681300700415 es_ES
dc.description.references Walsh, J., Roberts, R., & Bailey, T. (2010). Guidelines for Insulin Dosing in Continuous Subcutaneous Insulin Infusion Using New Formulas from a Retrospective Study of Individuals with Optimal Glucose Levels. Journal of Diabetes Science and Technology, 4(5), 1174-1181. doi:10.1177/193229681000400516 es_ES
dc.description.references Owens, C., Zisser, H., Jovanovic, L., Srinivasan, B., Bonvin, D., & Doyle, F. J. (2006). Run-to-run control of blood glucose concentrations for people with type 1 diabetes mellitus. IEEE Transactions on Biomedical Engineering, 53(6), 996-1005. doi:10.1109/tbme.2006.872818 es_ES
dc.description.references Palerm, C. C., Zisser, H., Bevier, W. C., Jovanovic, L., & Doyle, F. J. (2007). Prandial Insulin Dosing Using Run-to-Run Control: Application of clinical data and medical expertise to define a suitable performance metric. Diabetes Care, 30(5), 1131-1136. doi:10.2337/dc06-2115 es_ES
dc.description.references Tuo, J., Sun, H., Shen, D., Wang, H., & Wang, Y. (2015). Optimization of insulin pump therapy based on high order run-to-run control scheme. Computer Methods and Programs in Biomedicine, 120(3), 123-134. doi:10.1016/j.cmpb.2015.04.010 es_ES
dc.description.references Herrero, P., Pesl, P., Bondia, J., Reddy, M., Oliver, N., Georgiou, P., & Toumazou, C. (2015). Method for automatic adjustment of an insulin bolus calculator: In silico robustness evaluation under intra-day variability. Computer Methods and Programs in Biomedicine, 119(1), 1-8. doi:10.1016/j.cmpb.2015.02.003 es_ES
dc.description.references Reddy, M., Pesl, P., Xenou, M., Toumazou, C., Johnston, D., Georgiou, P., … Oliver, N. (2016). Clinical Safety and Feasibility of the Advanced Bolus Calculator for Type 1 Diabetes Based on Case-Based Reasoning: A 6-Week Nonrandomized Single-Arm Pilot Study. Diabetes Technology & Therapeutics, 18(8), 487-493. doi:10.1089/dia.2015.0413 es_ES
dc.description.references Palerm, C. C., Zisser, H., Jovanovič, L., & Doyle, F. J. (2008). A run-to-run control strategy to adjust basal insulin infusion rates in type 1 diabetes. Journal of Process Control, 18(3-4), 258-265. doi:10.1016/j.jprocont.2007.07.010 es_ES
dc.description.references Toffanin, C., Messori, M., Cobelli, C., & Magni, L. (2017). Automatic adaptation of basal therapy for Type 1 diabetic patients: A Run-to-Run approach. Biomedical Signal Processing and Control, 31, 539-549. doi:10.1016/j.bspc.2016.09.002 es_ES
dc.description.references Wang, Y., Percival, M. W., Dassau, E., Zisser, H. C., Jovanovič, L., & Doyle, F. J. (2009). A Novel Adaptive Basal Therapy Based on the Value and Rate of Change of Blood Glucose. Journal of Diabetes Science and Technology, 3(5), 1099-1108. doi:10.1177/193229680900300513 es_ES
dc.description.references Herrero, P., Bondia, J., Adewuyi, O., Pesl, P., El-Sharkawy, M., Reddy, M., … Georgiou, P. (2017). Enhancing automatic closed-loop glucose control in type 1 diabetes with an adaptive meal bolus calculator – in silico evaluation under intra-day variability. Computer Methods and Programs in Biomedicine, 146, 125-131. doi:10.1016/j.cmpb.2017.05.010 es_ES
dc.description.references Dassau, E., Pinsker, J. E., Kudva, Y. C., Brown, S. A., Gondhalekar, R., Dalla Man, C., … Doyle, F. J. (2017). Twelve-Week 24/7 Ambulatory Artificial Pancreas With Weekly Adaptation of Insulin Delivery Settings: Effect on Hemoglobin A1cand Hypoglycemia. Diabetes Care, 40(12), 1719-1726. doi:10.2337/dc17-1188 es_ES
dc.description.references Messori, M., Kropff, J., Del Favero, S., Place, J., Visentin, R., Calore, R., … for the AP@home consortium. (2017). Individually Adaptive Artificial Pancreas in Subjects with Type 1 Diabetes: A One-Month Proof-of-Concept Trial in Free-Living Conditions. Diabetes Technology & Therapeutics, 19(10), 560-571. doi:10.1089/dia.2016.0463 es_ES
dc.description.references Wang, Y., Gao, F., & Doyle, F. J. (2009). Survey on iterative learning control, repetitive control, and run-to-run control. Journal of Process Control, 19(10), 1589-1600. doi:10.1016/j.jprocont.2009.09.006 es_ES
dc.description.references Kovatchev, B. P., Breton, M., Dalla Man, C., & Cobelli, C. (2009). In SilicoPreclinical Trials: A Proof of Concept in Closed-Loop Control of Type 1 Diabetes. Journal of Diabetes Science and Technology, 3(1), 44-55. doi:10.1177/193229680900300106 es_ES
dc.description.references Dalla Man, C., Rizza, R. A., & Cobelli, C. (2007). Meal Simulation Model of the Glucose-Insulin System. IEEE Transactions on Biomedical Engineering, 54(10), 1740-1749. doi:10.1109/tbme.2007.893506 es_ES
dc.description.references Schiavon, M., Man, C. D., Kudva, Y. C., Basu, A., & Cobelli, C. (2013). In SilicoOptimization of Basal Insulin Infusion Rate during Exercise: Implication for Artificial Pancreas. Journal of Diabetes Science and Technology, 7(6), 1461-1469. doi:10.1177/193229681300700606 es_ES
dc.description.references Maahs, D. M., Buckingham, B. A., Castle, J. R., Cinar, A., Damiano, E. R., Dassau, E., … Lum, J. W. (2016). Outcome Measures for Artificial Pancreas Clinical Trials: A Consensus Report: Table 1. Diabetes Care, 39(7), 1175-1179. doi:10.2337/dc15-2716 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem