Mostrar el registro sencillo del ítem
dc.contributor.author | Salt Llobregat, Julián José | es_ES |
dc.contributor.author | Alcaina-Acosta, José Joaquín | es_ES |
dc.date.accessioned | 2020-04-17T12:50:08Z | |
dc.date.available | 2020-04-17T12:50:08Z | |
dc.date.issued | 2019-07-04 | es_ES |
dc.identifier.issn | 0308-1079 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/140906 | |
dc.description | This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of General Systems on JUL 4 2019, available online: http://www.tandfonline.com/10.1080/03081079.2019.1608984 | es_ES |
dc.description.abstract | [EN] The main goal of this contribution is to introduce a new procedure in order to analyse properly SISO dual-rate systems (DRS) and to provide straightforward answers to some common general questions about this kind of systems. Frequency response analysis based on DRS lifting modelling can lead to interesting results about stability margins or performance prediction. As a novelty, it is explained how to understand DRS frequency response and how to handle it for an easy computation of magnitude and phase margins keeping classical frequency domain methods. There are also some repetitive questions about DRS that can be analysed and answered properly using the results from this contribution: what the optimum relation between sampling periods is or what effects does delay have in a DRS. Every step is illustrated with examples that should clarify the understanding of the text. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | International Journal of General Systems | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Dual-rate systems | es_ES |
dc.subject | Frequency response | es_ES |
dc.subject | Stability | es_ES |
dc.subject | Bode diagram | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.title | Dual-rate sampled-data systems. Some interesting consequences from its frequency response analysis | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/03081079.2019.1608984 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica | es_ES |
dc.description.bibliographicCitation | Salt Llobregat, JJ.; Alcaina-Acosta, JJ. (2019). Dual-rate sampled-data systems. Some interesting consequences from its frequency response analysis. International Journal of General Systems. 48(5):554-574. https://doi.org/10.1080/03081079.2019.1608984 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/03081079.2019.1608984 | es_ES |
dc.description.upvformatpinicio | 554 | es_ES |
dc.description.upvformatpfin | 574 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 48 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.pasarela | S\389141 | es_ES |
dc.description.references | Albertos, P. (1990). Block multirate input-output model for sampled-data control systems. IEEE Transactions on Automatic Control, 35(9), 1085-1088. doi:10.1109/9.58545 | es_ES |
dc.description.references | Bamieh, B., Pearson, J. B., Francis, B. A., & Tannenbaum, A. (1991). A lifting technique for linear periodic systems with applications to sampled-data control. Systems & Control Letters, 17(2), 79-88. doi:10.1016/0167-6911(91)90033-b | es_ES |
dc.description.references | Bu, X., Dong, H., Han, F., & Li, G. (2018). Event-triggered distributed filtering over sensor networks with deception attacks and partial measurements. International Journal of General Systems, 47(5), 522-534. doi:10.1080/03081079.2018.1462353 | es_ES |
dc.description.references | Cimino, M., & Pagilla, P. R. (2010). Conditions for the ripple-free response of multirate systems using linear time-invariant controllers. Systems & Control Letters, 59(8), 510-516. doi:10.1016/j.sysconle.2010.06.013 | es_ES |
dc.description.references | Cimino, M., & Pagilla, P. R. (2010). Design of linear time-invariant controllers for multirate systems. Automatica, 46(8), 1315-1319. doi:10.1016/j.automatica.2010.05.003 | es_ES |
dc.description.references | COFFEY, T. C., & WILLIAMS, I. J. (1966). Stability analysis of multiloop, multirate sampled systems. AIAA Journal, 4(12), 2178-2190. doi:10.2514/3.3874 | es_ES |
dc.description.references | Cuenca, Á., Salt, J., Sala, A., & Piza, R. (2011). A Delay-Dependent Dual-Rate PID Controller Over an Ethernet Network. IEEE Transactions on Industrial Informatics, 7(1), 18-29. doi:10.1109/tii.2010.2085007 | es_ES |
dc.description.references | Du, Y. Y., Tsai, J. S. H., Patil, H., Shieh, L. S., & Chen, Y. (2011). Indirect identification of continuous-time delay systems from step responses. Applied Mathematical Modelling, 35(2), 594-611. doi:10.1016/j.apm.2010.07.004 | es_ES |
dc.description.references | Hou, N., Dong, H., Zhang, W., Liu, Y., & Alsaadi, F. E. (2018). Event-triggered state estimation for time-delayed complex networks with gain variations based on partial nodes. International Journal of General Systems, 47(5), 477-490. doi:10.1080/03081079.2018.1462352 | es_ES |
dc.description.references | Kalman, R. E., & Bertram, J. E. (1959). General synthesis procedure for computer control of single-loop and multiloop linear systems (an optimal sampling system). Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry, 77(6), 602-609. doi:10.1109/tai.1959.6371508 | es_ES |
dc.description.references | Kranc, G. (1957). Input-output analysis of multirate feedback systems. IRE Transactions on Automatic Control, 3(1), 21-28. doi:10.1109/tac.1957.1104783 | es_ES |
dc.description.references | Liu, D., Liu, Y., & Alsaadi, F. E. (2016). A new framework for output feedback controller design for a class of discrete-time stochastic nonlinear system with quantization and missing measurement. International Journal of General Systems, 45(5), 517-531. doi:10.1080/03081079.2015.1106737 | es_ES |
dc.description.references | Meyer, R., & Burrus, C. (1975). A unified analysis of multirate and periodically time-varying digital filters. IEEE Transactions on Circuits and Systems, 22(3), 162-168. doi:10.1109/tcs.1975.1084020 | es_ES |
dc.description.references | Petrella, R., & Tursini, M. (2008). An Embedded System for Position and Speed Measurement Adopting Incremental Encoders. IEEE Transactions on Industry Applications, 44(5), 1436-1444. doi:10.1109/tia.2008.2002167 | es_ES |
dc.description.references | Salt, J., & Albertos, P. (2005). Model-based multirate controllers design. IEEE Transactions on Control Systems Technology, 13(6), 988-997. doi:10.1109/tcst.2005.857410 | es_ES |
dc.description.references | Salt, J., Cuenca, Á., Palau, F., & Dormido, S. (2014). A Multirate Control Strategy to the Slow Sensors Problem: An Interactive Simulation Tool for Controller Assisted Design. Sensors, 14(3), 4086-4110. doi:10.3390/s140304086 | es_ES |
dc.description.references | Salt, J., & Sala, A. (2014). A new algorithm for dual-rate systems frequency response computation in discrete control systems. Applied Mathematical Modelling, 38(23), 5692-5704. doi:10.1016/j.apm.2014.04.054 | es_ES |
dc.description.references | THOMPSON, P. M. (1986). Gain and phase margins of multi-rate sampled-data feedback systems†. International Journal of Control, 44(3), 833-846. doi:10.1080/00207178608933635 | es_ES |
dc.description.references | Tsai, J. S. H., Chen, C. M., & Shieh, L. S. (1993). Modelling of multirate feedback systems using uniform-rate models. Applied Mathematical Modelling, 17(1), 2-14. doi:10.1016/0307-904x(93)90122-w | es_ES |
dc.description.references | Zhao, D., Wang, Z., Ding, D., Wei, G., & Alsaadi, F. E. (2018). PID output-feedback control under event-triggered protocol. International Journal of General Systems, 47(5), 432-445. doi:10.1080/03081079.2018.1459596 | es_ES |