Mostrar el registro sencillo del ítem
dc.contributor.author | Salas-Molina, Francisco![]() |
es_ES |
dc.contributor.author | Rodriguez-Aguilar, Juan A.![]() |
es_ES |
dc.contributor.author | Pla Santamaría, David![]() |
es_ES |
dc.date.accessioned | 2020-04-17T12:50:23Z | |
dc.date.available | 2020-04-17T12:50:23Z | |
dc.date.issued | 2019 | es_ES |
dc.identifier.issn | 0315-5986 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/140912 | |
dc.description.abstract | [EN] Cash management decision-making can be handled from a multiobjective perspective by optimizing not only cost but also risk. Nevertheless, choosing the best policies under a changing context is by no means straightforward. To this end, we rely on compromise programming to incorporate robustness as an additional goal to cost and risk within a multiobjective framework. As a result, we propose to calculate robustness as a multiple criteria distance index that is able to identify the best compromise policies in terms of cost and risk. Such policies are also robust to cash flow regime changes. We show its utility by transforming the Miller and Orr s cash management model into its robust counterpart using real data from an industrial company. | es_ES |
dc.description.sponsorship | Ministerio de Economia y Competitividad [grant number Collectiveware TIN2015-66863-C2-1-R], [grant number 2014 SGR 118]. Work partially funded by projects Collectiveware TIN2015-66863-C2-1-R (MINECO/FEDER) and 2014 SGR 118. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | INFOR Information Systems and Operational Research | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Cash management | es_ES |
dc.subject | Multicriteria decision-making | es_ES |
dc.subject | Robustness | es_ES |
dc.subject | Distance measures | es_ES |
dc.subject.classification | ECONOMIA FINANCIERA Y CONTABILIDAD | es_ES |
dc.title | On the use of multiple criteria distance indexes to find robust cash management policies | es_ES |
dc.type | Artículo | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.1080/03155986.2017.1282291 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2015-66863-C2-1-R/ES/COLLECTIVEWARE: TECNOLOGIAS PARA POTENCIAR COLECTIVOS HUMANOS EN LA RED ELECTRICA INTELIGENTE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat de Catalunya//2014 SGR 118/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Economía y Ciencias Sociales - Departament d'Economia i Ciències Socials | es_ES |
dc.description.bibliographicCitation | Salas-Molina, F.; Rodriguez-Aguilar, JA.; Pla Santamaría, D. (2019). On the use of multiple criteria distance indexes to find robust cash management policies. INFOR Information Systems and Operational Research. 57(3):345-360. https://doi.org/10.1080/03155986.2017.1282291 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | International Conference on Multidimensional Finance, Insurance and Investment (ICFMII 2016) | es_ES |
dc.relation.conferencedate | Junio 26-29,2016 | es_ES |
dc.relation.conferenceplace | Alcoi, España | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/03155986.2017.1282291 | es_ES |
dc.description.upvformatpinicio | 345 | es_ES |
dc.description.upvformatpfin | 360 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 57 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\324955 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Generalitat de Catalunya | es_ES |
dc.description.references | Abdelaziz, F. B., Aouni, B., & Fayedh, R. E. (2007). Multi-objective stochastic programming for portfolio selection. European Journal of Operational Research, 177(3), 1811-1823. doi:10.1016/j.ejor.2005.10.021 | es_ES |
dc.description.references | Aouni, B., & La Torre, D. (2010). A generalized stochastic goal programming model. Applied Mathematics and Computation, 215(12), 4347-4357. doi:10.1016/j.amc.2009.12.065 | es_ES |
dc.description.references | Baccarin, S. (2009). Optimal impulse control for a multidimensional cash management system with generalized cost functions. European Journal of Operational Research, 196(1), 198-206. doi:10.1016/j.ejor.2008.02.040 | es_ES |
dc.description.references | Baumol, W. J. (1952). The Transactions Demand for Cash: An Inventory Theoretic Approach. The Quarterly Journal of Economics, 66(4), 545. doi:10.2307/1882104 | es_ES |
dc.description.references | Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust Optimization. doi:10.1515/9781400831050 | es_ES |
dc.description.references | Ben-Tal, A., & Nemirovski, A. (1999). Robust solutions of uncertain linear programs. Operations Research Letters, 25(1), 1-13. doi:10.1016/s0167-6377(99)00016-4 | es_ES |
dc.description.references | Constantinides, G. M., & Richard, S. F. (1978). Existence of Optimal Simple Policies for Discounted-Cost Inventory and Cash Management in Continuous Time. Operations Research, 26(4), 620-636. doi:10.1287/opre.26.4.620 | es_ES |
dc.description.references | Moraes, M. B. da C., & Nagano, M. S. (2014). Evolutionary models in cash management policies with multiple assets. Economic Modelling, 39, 1-7. doi:10.1016/j.econmod.2014.02.010 | es_ES |
dc.description.references | Da Costa Moraes, M. B., Nagano, M. S., & Sobreiro, V. A. (2015). Stochastic Cash Flow Management Models: A Literature Review Since the 1980s. Decision Engineering, 11-28. doi:10.1007/978-3-319-11949-6_2 | es_ES |
dc.description.references | Deza, M. M., & Deza, E. (2014). Encyclopedia of Distances. doi:10.1007/978-3-662-44342-2 | es_ES |
dc.description.references | Emery, G. W. (1981). Some Empirical Evidence on the Properties of Daily Cash Flow. Financial Management, 10(1), 21. doi:10.2307/3665109 | es_ES |
dc.description.references | Gormley, F. M., & Meade, N. (2007). The utility of cash flow forecasts in the management of corporate cash balances. European Journal of Operational Research, 182(2), 923-935. doi:10.1016/j.ejor.2006.07.041 | es_ES |
dc.description.references | Gregory, G. (1976). Cash flow models: A review. Omega, 4(6), 643-656. doi:10.1016/0305-0483(76)90092-x | es_ES |
dc.description.references | Franklin, J. (2005). The elements of statistical learning: data mining, inference and prediction. The Mathematical Intelligencer, 27(2), 83-85. doi:10.1007/bf02985802 | es_ES |
dc.description.references | Miller, M. H., & Orr, D. (1966). A Model of the Demand for Money by Firms. The Quarterly Journal of Economics, 80(3), 413. doi:10.2307/1880728 | es_ES |
dc.description.references | Penttinen, M. J. (1991). Myopic and stationary solutions for stochastic cash balance problems. European Journal of Operational Research, 52(2), 155-166. doi:10.1016/0377-2217(91)90077-9 | es_ES |
dc.description.references | Premachandra, I. . (2004). A diffusion approximation model for managing cash in firms: An alternative approach to the Miller–Orr model. European Journal of Operational Research, 157(1), 218-226. doi:10.1016/s0377-2217(03)00109-7 | es_ES |
dc.description.references | Sahinidis, N. V. (2004). Optimization under uncertainty: state-of-the-art and opportunities. Computers & Chemical Engineering, 28(6-7), 971-983. doi:10.1016/j.compchemeng.2003.09.017 | es_ES |
dc.description.references | Salas-Molina, F., Pla-Santamaria, D., & Rodriguez-Aguilar, J. A. (2016). A multi-objective approach to the cash management problem. Annals of Operations Research, 267(1-2), 515-529. doi:10.1007/s10479-016-2359-1 | es_ES |
dc.description.references | Soyster, A. L. (1973). Technical Note—Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming. Operations Research, 21(5), 1154-1157. doi:10.1287/opre.21.5.1154 | es_ES |
dc.description.references | Srinivasan, V., & Kim, Y. H. (1986). Deterministic cash flow management: State of the art and research directions. Omega, 14(2), 145-166. doi:10.1016/0305-0483(86)90017-4 | es_ES |