Blanes Zamora, S.; Casas, F.; Mechthild Thalhammer (2017). High-order commutator-free quasi-Magnus exponential integrators for non-autonomous linear evolution equations. Computer Physics Communications. 220:243-262. https://doi.org/10.1016/j.cpc.2017.07.016
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140915
Title:
|
High-order commutator-free quasi-Magnus exponential integrators for non-autonomous linear evolution equations
|
Author:
|
Blanes Zamora, Sergio
Casas, Fernando
Mechthild Thalhammer
|
UPV Unit:
|
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
|
Issued date:
|
|
Abstract:
|
[EN] The class of commutator-free quasi-Magnus (CFQM) exponential integrators provides a favourable alternative to standard Magnus integrators, in particular for large-scale applications arising in the time integration of ...[+]
[EN] The class of commutator-free quasi-Magnus (CFQM) exponential integrators provides a favourable alternative to standard Magnus integrators, in particular for large-scale applications arising in the time integration of non-autonomous linear evolution equations. The schemes are given by compositions of several exponentials that comprise certain linear combinations of the values of the defining operator at specified nodes. Due to the fact that previously proposed CFQM exponential integrators of order five or higher involve negative coefficients in the linear combinations, severe instabilities are observed for spatially semi-discretised parabolic equations or for master equations describing dissipative quantum systems. In order to remedy this issue, two different approaches for the design of efficient time integrators of orders four, five, and six are pursued: (i) the study of CFQM exponential integrators involving complex coefficients that satisfy a positivity condition, and (ii) the study of unconventional methods in the sense that an additional exponential involving a commutator of higher order with respect to the time stepsize occurs. Numerical experiments confirm that the identified novel time integrators are superior to other integrators of the same family previously proposed in the literature.
[-]
|
Subjects:
|
Non-autonomous linear equations
,
Exponential methods
,
Magnus integrators
,
Dissipative quantum systems
,
Schrodinger equations
,
Master equations
|
Copyrigths:
|
Reserva de todos los derechos
|
Source:
|
Computer Physics Communications. (issn:
0010-4655
)
|
DOI:
|
10.1016/j.cpc.2017.07.016
|
Publisher:
|
Elsevier
|
Publisher version:
|
https://doi.org/10.1016/j.cpc.2017.07.016
|
Project ID:
|
info:eu-repo/grantAgreement/MINECO//MTM2016-77660-P/ES/NUEVOS RETOS EN INTEGRACION NUMERICA: FUNDAMENTOS ALGEBRAICOS, METODOS DE ESCISION, METODOS DE MONTECARLO Y OTRAS APLICACIONES/
info:eu-repo/grantAgreement/FWF//P 21620/AT/Numerical methods for nonlinear Schrödinger equations/
info:eu-repo/grantAgreement/MINECO//MTM2013-46553-C3-3-P/ES/METODOS DE ESCISION Y COMPOSICION EN INTEGRACION NUMERICA GEOMETRICA. TEORIA Y APLICACIONES/
|
Thanks:
|
We acknowledge financial support by the Universitat der Bundeswehr Munchen, by the Austrian Science Fund (FWF) under project P21620-N13, and by the Agence Nationale de la Recherche (ANR) within the Blanc International II ...[+]
We acknowledge financial support by the Universitat der Bundeswehr Munchen, by the Austrian Science Fund (FWF) under project P21620-N13, and by the Agence Nationale de la Recherche (ANR) within the Blanc International II Programme under project Modeling and Numerical Simulation of Low Dimensional Quantum Systems (LODIQUAS). The work of SB and FC has been additionally supported by Ministerio de Economia y Competitividad (Spain) through projects MTM2013-46553-C3 and MTM2016-77660-P (AEI/FEDER, UE).
[-]
|
Type:
|
Artículo
|