- -

Fluoride-induced modulation of ionic transport in asymmetric nanopores functionalized with "caged" fluorescein moieties

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fluoride-induced modulation of ionic transport in asymmetric nanopores functionalized with "caged" fluorescein moieties

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ali, Mubarak es_ES
dc.contributor.author Ahmed, Ishtiaq es_ES
dc.contributor.author Ramirez Hoyos, Patricio es_ES
dc.contributor.author Nasir, Saima es_ES
dc.contributor.author Cervera, Javier es_ES
dc.contributor.author Niemeyer, Christof M. es_ES
dc.contributor.author Ensinger, Wolfgang es_ES
dc.date.accessioned 2020-04-17T12:50:47Z
dc.date.available 2020-04-17T12:50:47Z
dc.date.issued 2016 es_ES
dc.identifier.issn 2040-3364 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140929
dc.description.abstract [EN] We demonstrate experimentally and theoretically a nanofluidic fluoride sensing device based on a single conical pore functionalized with "caged" fluorescein moieties. The nanopore functionalization is based on an amine-terminated fluorescein whose phenolic hydroxyl groups are protected with tert-butyldiphenylsilyl (TBDPS) moieties. The protected fluorescein (Fcn-TBDPS-NH2) molecules are then immobilized on the nanopore surface via carbodiimide coupling chemistry. Exposure to fluoride ions removes the uncharged TBDPS moieties due to the fluoride-promoted cleavage of the silicon-oxygen bond, leading to the generation of negatively charged groups on the fluorescein moieties immobilized onto the pore surface. The asymmetrical distribution of these groups along the conical nanopore leads to the electrical rectification observed in the current-voltage (I-V) curve. On the contrary, other halides and anions are not able to induce any significant ionic rectification in the asymmetric pore. In each case, the success of the chemical functionalization and deprotection reactions is monitored through the changes observed in the I-V curves before and after the specified reaction step. The theoretical results based on the Nernst-Planck and Poisson equations further demonstrate the validity of an experimental approach to fluoride-induced modulation of nanopore current rectification behaviour. es_ES
dc.description.sponsorship M. A., S. N. and W. E. acknowledge the funding from the Hessen State Ministry of Higher Education, Research and the Arts, Germany, under the LOEWE project iNAPO. P. R. and J. C. acknowledge financial support by the Generalitat Valenciana (Program of Excellence Prometeo/GV/0069), the Spanish Ministry of Economic Affairs and Competitiveness (MAT2015-65011-P), and FEDER. I. A. and C. M. N. acknowledge the financial support through the Helmholtz programme BioInterfaces in Technology and Medicine. The authors are thankful to Prof. Salvador Mafe (Universitat de Valencia, Spain) for fruitful discussion and to Prof. Christina Trautmann from GSI (Department of Material Research) for support with the heavy ion irradiation experiments. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Nanoscale es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Fluoride-induced modulation of ionic transport in asymmetric nanopores functionalized with "caged" fluorescein moieties es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c6nr00292g es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-65011-P/ES/NANOFLUIDICA DE POROS BIOMIMETICOS: NUEVAS APLICACIONES EN CONVERSION DE ENERGIA Y SENSORES%2FACTUADORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2FGV%2F0069 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Ali, M.; Ahmed, I.; Ramirez Hoyos, P.; Nasir, S.; Cervera, J.; Niemeyer, CM.; Ensinger, W. (2016). Fluoride-induced modulation of ionic transport in asymmetric nanopores functionalized with "caged" fluorescein moieties. Nanoscale. 8(16):8583-8590. https://doi.org/10.1039/c6nr00292g es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c6nr00292g es_ES
dc.description.upvformatpinicio 8583 es_ES
dc.description.upvformatpfin 8590 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 16 es_ES
dc.relation.pasarela S\314419 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Gale, P. A. (2010). Anion receptor chemistry: highlights from 2008 and 2009. Chemical Society Reviews, 39(10), 3746. doi:10.1039/c001871f es_ES
dc.description.references Kim, H. N., Guo, Z., Zhu, W., Yoon, J., & Tian, H. (2011). Recent progress on polymer-based fluorescent and colorimetric chemosensors. Chem. Soc. Rev., 40(1), 79-93. doi:10.1039/c0cs00058b es_ES
dc.description.references Zhou, Y., Zhang, J. F., & Yoon, J. (2014). Fluorescence and Colorimetric Chemosensors for Fluoride-Ion Detection. Chemical Reviews, 114(10), 5511-5571. doi:10.1021/cr400352m es_ES
dc.description.references Beer, P. D., & Gale, P. A. (2001). Anion Recognition and Sensing: The State of the Art and Future Perspectives. Angewandte Chemie International Edition, 40(3), 486-516. doi:10.1002/1521-3773(20010202)40:3<486::aid-anie486>3.0.co;2-p es_ES
dc.description.references Anuradha, C. D., Kanno, S., & Hirano, S. (2000). Fluoride induces apoptosis by caspase-3 activation in human leukemia HL-60 cells. Archives of Toxicology, 74(4-5), 226-230. doi:10.1007/s002040000132 es_ES
dc.description.references Refsnes, M., Schwarze, P. E., Holme, J. A., & Laêg, M. (2003). Fluoride-induced apoptosis in human epithelial lung cells (A549 cells): role of different G protein-linked signal systems. Human & Experimental Toxicology, 22(3), 111-123. doi:10.1191/0960327103ht322oa es_ES
dc.description.references Cheng, T.-J., Chen, T.-M., Chen, C.-H., & Lai, Y.-K. (1998). Induction of stress response and differential expression of 70 kDa stress proteins by sodium fluoride in hela and rat brain tumor 9l cells. Journal of Cellular Biochemistry, 69(2), 221-231. doi:10.1002/(sici)1097-4644(19980501)69:2<221::aid-jcb12>3.0.co;2-h es_ES
dc.description.references K. Kirk , in Biochemistry of the Elemental Halogens and Inorganic Halides, Springer, USA, 1991, vol. 9A+B, pp. 19–68 es_ES
dc.description.references Farley, Wergedal, J., & Baylink, D. (1983). Fluoride directly stimulates proliferation and alkaline phosphatase activity of bone-forming cells. Science, 222(4621), 330-332. doi:10.1126/science.6623079 es_ES
dc.description.references Cametti, M., & Rissanen, K. (2009). Recognition and sensing of fluoride anion. Chemical Communications, (20), 2809. doi:10.1039/b902069a es_ES
dc.description.references Orwoll, E. S. (1998). OSTEOPOROSIS IN MEN. Endocrinology and Metabolism Clinics of North America, 27(2), 349-367. doi:10.1016/s0889-8529(05)70009-8 es_ES
dc.description.references Kim, S. Y., Park, J., Koh, M., Park, S. B., & Hong, J.-I. (2009). Fluorescent probe for detection of fluoride in water and bioimaging in A549 human lung carcinoma cells. Chemical Communications, (31), 4735. doi:10.1039/b908745a es_ES
dc.description.references Singh, P. P., Barjatiya, M. k., Dhing, S., Bhatnagar, R., Kothari, S., & Dhar, V. (2001). Evidence suggesting that high intake of fluoride provokes nephrolithiasis in tribal populations. Urological Research, 29(4), 238-244. doi:10.1007/s002400100192 es_ES
dc.description.references Everett, E. T. (2010). Fluoride’s Effects on the Formation of Teeth and Bones, and the Influence of Genetics. Journal of Dental Research, 90(5), 552-560. doi:10.1177/0022034510384626 es_ES
dc.description.references Zhao, H., Leamer, L. A., & Gabbaï, F. P. (2013). Anion capture and sensing with cationic boranes: on the synergy of Coulombic effects and onium ion-centred Lewis acidity. Dalton Transactions, 42(23), 8164. doi:10.1039/c3dt50491c es_ES
dc.description.references Sarkar, M., Yellampalli, R., Bhattacharya, B., Kanaparthi, R. K., & Samanta, A. (2007). Ratiometric fluorescence signalling of fluoride ions by an amidophthalimide derivative. Journal of Chemical Sciences, 119(2), 91-97. doi:10.1007/s12039-007-0015-7 es_ES
dc.description.references B. Hille , Ionic channels of excitable membranes, Sinauer Associates Inc., Sunderland, MA, 3rd edn, 2001 es_ES
dc.description.references Aguilella, V. M., Verdiá-Báguena, C., & Alcaraz, A. (2014). Lipid charge regulation of non-specific biological ion channels. Phys. Chem. Chem. Phys., 16(9), 3881-3893. doi:10.1039/c3cp54690j es_ES
dc.description.references Bayley, H., & Cremer, P. S. (2001). Stochastic sensors inspired by biology. Nature, 413(6852), 226-230. doi:10.1038/35093038 es_ES
dc.description.references Healy, K. (2007). Nanopore-based single-molecule DNA analysis. Nanomedicine, 2(4), 459-481. doi:10.2217/17435889.2.4.459 es_ES
dc.description.references Howorka, S., & Siwy, Z. (2009). Nanopore analytics: sensing of single molecules. Chemical Society Reviews, 38(8), 2360. doi:10.1039/b813796j es_ES
dc.description.references Kasianowicz, J. J., Brandin, E., Branton, D., & Deamer, D. W. (1996). Characterization of individual polynucleotide molecules using a membrane channel. Proceedings of the National Academy of Sciences, 93(24), 13770-13773. doi:10.1073/pnas.93.24.13770 es_ES
dc.description.references Wang, H.-Y., Li, Y., Qin, L.-X., Heyman, A., Shoseyov, O., Willner, I., … Tian, H. (2013). Single-molecule DNA detection using a novel SP1 protein nanopore. Chemical Communications, 49(17), 1741. doi:10.1039/c3cc38939a es_ES
dc.description.references Dekker, C. (2007). Solid-state nanopores. Nature Nanotechnology, 2(4), 209-215. doi:10.1038/nnano.2007.27 es_ES
dc.description.references Healy, K., Schiedt, B., & Morrison, A. P. (2007). Solid-state nanopore technologies for nanopore-based DNA analysis. Nanomedicine, 2(6), 875-897. doi:10.2217/17435889.2.6.875 es_ES
dc.description.references Hou, X., Guo, W., & Jiang, L. (2011). Biomimetic smart nanopores and nanochannels. Chemical Society Reviews, 40(5), 2385. doi:10.1039/c0cs00053a es_ES
dc.description.references Hou, X., Zhang, H., & Jiang, L. (2012). Building Bio-Inspired Artificial Functional Nanochannels: From Symmetric to Asymmetric Modification. Angewandte Chemie International Edition, 51(22), 5296-5307. doi:10.1002/anie.201104904 es_ES
dc.description.references Siwy, Z. S., & Howorka, S. (2010). Engineered voltage-responsive nanopores. Chem. Soc. Rev., 39(3), 1115-1132. doi:10.1039/b909105j es_ES
dc.description.references Wen, L., Tian, Y., Ma, J., Zhai, J., & Jiang, L. (2012). Construction of biomimetic smart nanochannels with polymer membranes and application in energy conversion systems. Physical Chemistry Chemical Physics, 14(12), 4027. doi:10.1039/c2cp23911f es_ES
dc.description.references Zhang, H., Tian, Y., & Jiang, L. (2013). From symmetric to asymmetric design of bio-inspired smart single nanochannels. Chemical Communications, 49(86), 10048. doi:10.1039/c3cc45526b es_ES
dc.description.references Ali, M., Nasir, S., Ahmed, I., Fruk, L., & Ensinger, W. (2013). Tuning nanopore surface polarity and rectification properties through enzymatic hydrolysis inside nanoconfined geometries. Chemical Communications, 49(78), 8770. doi:10.1039/c3cc45318a es_ES
dc.description.references Ali, M., Nasir, S., Ramirez, P., Ahmed, I., Nguyen, Q. H., Fruk, L., … Ensinger, W. (2011). Optical Gating of Photosensitive Synthetic Ion Channels. Advanced Functional Materials, 22(2), 390-396. doi:10.1002/adfm.201102146 es_ES
dc.description.references Ali, M., Nasir, S., Ramirez, P., Cervera, J., Mafe, S., & Ensinger, W. (2012). Calcium Binding and Ionic Conduction in Single Conical Nanopores with Polyacid Chains: Model and Experiments. ACS Nano, 6(10), 9247-9257. doi:10.1021/nn303669g es_ES
dc.description.references Ali, M., Ramirez, P., Mafé, S., Neumann, R., & Ensinger, W. (2009). A pH-Tunable Nanofluidic Diode with a Broad Range of Rectifying Properties. ACS Nano, 3(3), 603-608. doi:10.1021/nn900039f es_ES
dc.description.references Ali, M., Ramirez, P., Nguyen, H. Q., Nasir, S., Cervera, J., Mafe, S., & Ensinger, W. (2012). Single Cigar-Shaped Nanopores Functionalized with Amphoteric Amino Acid Chains: Experimental and Theoretical Characterization. ACS Nano, 6(4), 3631-3640. doi:10.1021/nn3010119 es_ES
dc.description.references Nasir, S., Ali, M., & Ensinger, W. (2012). Thermally controlled permeation of ionic molecules through synthetic nanopores functionalized with amine-terminated polymer brushes. Nanotechnology, 23(22), 225502. doi:10.1088/0957-4484/23/22/225502 es_ES
dc.description.references Nasir, S., Ali, M., Ramirez, P., Gómez, V., Oschmann, B., Muench, F., … Ensinger, W. (2014). Fabrication of Single Cylindrical Au-Coated Nanopores with Non-Homogeneous Fixed Charge Distribution Exhibiting High Current Rectifications. ACS Applied Materials & Interfaces, 6(15), 12486-12494. doi:10.1021/am502419j es_ES
dc.description.references Nasir, S., Ramirez, P., Ali, M., Ahmed, I., Fruk, L., Mafe, S., & Ensinger, W. (2013). Nernst-Planck model of photo-triggered, pH–tunable ionic transport through nanopores functionalized with «caged» lysine chains. The Journal of Chemical Physics, 138(3), 034709. doi:10.1063/1.4775811 es_ES
dc.description.references Siwy, Z., Heins, E., Harrell, C. C., Kohli, P., & Martin, C. R. (2004). Conical-Nanotube Ion-Current Rectifiers:  The Role of Surface Charge. Journal of the American Chemical Society, 126(35), 10850-10851. doi:10.1021/ja047675c es_ES
dc.description.references Zhang, H., Hou, X., Zeng, L., Yang, F., Li, L., Yan, D., … Jiang, L. (2013). Bioinspired Artificial Single Ion Pump. Journal of the American Chemical Society, 135(43), 16102-16110. doi:10.1021/ja4037669 es_ES
dc.description.references Gyurcsányi, R. E. (2008). Chemically-modified nanopores for sensing. TrAC Trends in Analytical Chemistry, 27(7), 627-639. doi:10.1016/j.trac.2008.06.002 es_ES
dc.description.references Wanunu, M., & Meller, A. (2007). Chemically Modified Solid-State Nanopores. Nano Letters, 7(6), 1580-1585. doi:10.1021/nl070462b es_ES
dc.description.references Ali, M., Nasir, S., Nguyen, Q. H., Sahoo, J. K., Tahir, M. N., Tremel, W., & Ensinger, W. (2011). Metal Ion Affinity-based Biomolecular Recognition and Conjugation inside Synthetic Polymer Nanopores Modified with Iron–Terpyridine Complexes. Journal of the American Chemical Society, 133(43), 17307-17314. doi:10.1021/ja205042t es_ES
dc.description.references Ali, M., Nasir, S., Ramirez, P., Cervera, J., Mafe, S., & Ensinger, W. (2013). Carbohydrate-Mediated Biomolecular Recognition and Gating of Synthetic Ion Channels. The Journal of Physical Chemistry C, 117(35), 18234-18242. doi:10.1021/jp4054555 es_ES
dc.description.references Ali, M., Neumann, R., & Ensinger, W. (2010). Sequence-Specific Recognition of DNA Oligomer Using Peptide Nucleic Acid (PNA)-Modified Synthetic Ion Channels: PNA/DNA Hybridization in Nanoconfined Environment. ACS Nano, 4(12), 7267-7274. doi:10.1021/nn102119q es_ES
dc.description.references Ali, M., Ramirez, P., Tahir, M. N., Mafe, S., Siwy, Z., Neumann, R., … Ensinger, W. (2011). Biomolecular conjugation inside synthetic polymer nanopores via glycoprotein–lectin interactions. Nanoscale, 3(4), 1894. doi:10.1039/c1nr00003a es_ES
dc.description.references Ali, M., Schiedt, B., Neumann, R., & Ensinger, W. (2009). Biosensing with Functionalized Single Asymmetric Polymer Nanochannels. Macromolecular Bioscience, 10(1), 28-32. doi:10.1002/mabi.200900198 es_ES
dc.description.references Ali, M., Tahir, M. N., Siwy, Z., Neumann, R., Tremel, W., & Ensinger, W. (2011). Hydrogen Peroxide Sensing with Horseradish Peroxidase-Modified Polymer Single Conical Nanochannels. Analytical Chemistry, 83(5), 1673-1680. doi:10.1021/ac102795a es_ES
dc.description.references Han, C., Su, H., Sun, Z., Wen, L., Tian, D., Xu, K., … Jiang, L. (2013). Biomimetic Ion Nanochannels as a Highly Selective Sequential Sensor for Zinc Ions Followed by Phosphate Anions. Chemistry - A European Journal, 19(28), 9388-9395. doi:10.1002/chem.201300200 es_ES
dc.description.references Hou, X., & Jiang, L. (2009). Learning from Nature: Building Bio-Inspired Smart Nanochannels. ACS Nano, 3(11), 3339-3342. doi:10.1021/nn901402b es_ES
dc.description.references Nguyen, Q. H., Ali, M., Neumann, R., & Ensinger, W. (2012). Saccharide/glycoprotein recognition inside synthetic ion channels modified with boronic acid. Sensors and Actuators B: Chemical, 162(1), 216-222. doi:10.1016/j.snb.2011.12.070 es_ES
dc.description.references Siwy, Z., Trofin, L., Kohli, P., Baker, L. A., Trautmann, C., & Martin, C. R. (2005). Protein Biosensors Based on Biofunctionalized Conical Gold Nanotubes. Journal of the American Chemical Society, 127(14), 5000-5001. doi:10.1021/ja043910f es_ES
dc.description.references Tian, Y., Hou, X., Wen, L., Guo, W., Song, Y., Sun, H., … Zhu, D. (2010). A biomimetic zinc activated ion channel. Chemical Communications, 46(10), 1682. doi:10.1039/b918006k es_ES
dc.description.references Vlassiouk, I., Kozel, T. R., & Siwy, Z. S. (2009). Biosensing with Nanofluidic Diodes. Journal of the American Chemical Society, 131(23), 8211-8220. doi:10.1021/ja901120f es_ES
dc.description.references Apel, P. Y., Korchev, Y. ., Siwy, Z., Spohr, R., & Yoshida, M. (2001). Diode-like single-ion track membrane prepared by electro-stopping. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 184(3), 337-346. doi:10.1016/s0168-583x(01)00722-4 es_ES
dc.description.references Brglez, J., Ahmed, I., & Niemeyer, C. M. (2015). Photocleavable ligands for protein decoration of DNA nanostructures. Organic & Biomolecular Chemistry, 13(18), 5102-5104. doi:10.1039/c5ob00316d es_ES
dc.description.references Appiah-Ntiamoah, R., Chung, W.-J., & Kim, H. (2015). A highly selective SBA-15 supported fluorescent «turn-on» sensor for the fluoride anion. New Journal of Chemistry, 39(7), 5570-5579. doi:10.1039/c5nj00495k es_ES
dc.description.references Cervera, J., Ramirez, P., Mafe, S., & Stroeve, P. (2011). Asymmetric nanopore rectification for ion pumping, electrical power generation, and information processing applications. Electrochimica Acta, 56(12), 4504-4511. doi:10.1016/j.electacta.2011.02.056 es_ES
dc.description.references Cervera, J., Schiedt, B., Neumann, R., Mafé, S., & Ramírez, P. (2006). Ionic conduction, rectification, and selectivity in single conical nanopores. The Journal of Chemical Physics, 124(10), 104706. doi:10.1063/1.2179797 es_ES
dc.description.references Cervera, J., Schiedt, B., & Ramírez, P. (2005). A Poisson/Nernst-Planck model for ionic transport through synthetic conical nanopores. Europhysics Letters (EPL), 71(1), 35-41. doi:10.1209/epl/i2005-10054-x es_ES
dc.description.references Ramírez, P., Apel, P. Y., Cervera, J., & Mafé, S. (2008). Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties. Nanotechnology, 19(31), 315707. doi:10.1088/0957-4484/19/31/315707 es_ES
dc.description.references Ramírez, P., Gómez, V., Cervera, J., Schiedt, B., & Mafé, S. (2007). Ion transport and selectivity in nanopores with spatially inhomogeneous fixed charge distributions. The Journal of Chemical Physics, 126(19), 194703. doi:10.1063/1.2735608 es_ES
dc.description.references Siwy, Z., & Fuliński, A. (2004). A nanodevice for rectification and pumping ions. American Journal of Physics, 72(5), 567-574. doi:10.1119/1.1648328 es_ES
dc.description.references Siwy, Z. S. (2006). Ion-Current Rectification in Nanopores and Nanotubes with Broken Symmetry. Advanced Functional Materials, 16(6), 735-746. doi:10.1002/adfm.200500471 es_ES
dc.description.references Chavali, R., Gunda, N. S. K., Naicker, S., & Mitra, S. K. (2015). Rapid detection of fluoride in potable water using a novel fluorogenic compound 7-O-tert-butyldiphenylsilyl-4-methylcoumarin. Analytical Chemistry Research, 6, 26-31. doi:10.1016/j.ancr.2015.10.003 es_ES
dc.description.references Cao, J., Zhao, C., & Zhu, W. (2012). A near-infrared fluorescence chemodosimeter for fluoride via specific Si–O cleavage. Tetrahedron Letters, 53(16), 2107-2110. doi:10.1016/j.tetlet.2012.02.051 es_ES
dc.description.references Hu, R., Feng, J., Hu, D., Wang, S., Li, S., Li, Y., & Yang, G. (2010). A Rapid Aqueous Fluoride Ion Sensor with Dual Output Modes. Angewandte Chemie International Edition, 49(29), 4915-4918. doi:10.1002/anie.201000790 es_ES
dc.description.references Wei, G., Yin, J., Ma, X., Yu, S., Wei, D., & Du, Y. (2011). A carbohydrate modified fluoride ion sensor and its applications. Analytica Chimica Acta, 703(2), 219-225. doi:10.1016/j.aca.2011.07.009 es_ES
dc.description.references Zanker, V., & Peter, W. (1958). Die prototropen Formen des Fluoresceins. Chemische Berichte, 91(3), 572-580. doi:10.1002/cber.19580910316 es_ES
dc.description.references Leonhardt, H., Gordon, L., & Livingston, R. (1971). Acid-base equilibriums of fluorescein and 2’,7’-dichlorofluorescein in their ground and fluorescent states. The Journal of Physical Chemistry, 75(2), 245-249. doi:10.1021/j100672a011 es_ES
dc.description.references Martin, M. M., & Lindqvist, L. (1975). The pH dependence of fluorescein fluorescence. Journal of Luminescence, 10(6), 381-390. doi:10.1016/0022-2313(75)90003-4 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem