- -

Pepper Rootstock and Scion Physiological Responses Under Drought Stress

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Pepper Rootstock and Scion Physiological Responses Under Drought Stress

Show simple item record

Files in this item

dc.contributor.author Lopez-Serrano, Lidia es_ES
dc.contributor.author Canet-Sanchis, G es_ES
dc.contributor.author Selak, G.V. es_ES
dc.contributor.author Penella-Casañ, Consuelo es_ES
dc.contributor.author San Bautista Primo, Alberto es_ES
dc.contributor.author López Galarza, Salvador Vicente es_ES
dc.contributor.author Calatayud, A. es_ES
dc.date.accessioned 2020-04-17T12:50:51Z
dc.date.available 2020-04-17T12:50:51Z
dc.date.issued 2019-01-28 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140931
dc.description.abstract [EN] In vegetables, tolerance to drought can be improved by grafting commercial varieties onto drought tolerant rootstocks. Grafting has emerged as a tool that copes with drought stress. In previous results, the A25 pepper rootstock accession showed good tolerance to drought in fruit production terms compared with non-grafted plants and other rootstocks. The aim of this work was to study if short-term exposure to drought in grafted plants using A25 as a rootstock would show tolerance to drought now. To fulfill this objective, some physiological processes involved in roots (rootstock) and leaves (scion) of grafted pepper plants were analyzed. Pepper plants not grafted (A), self-grafted (A/A), and grafted onto a tolerant pepper rootstock A25 (A/A25) were grown under severe water stress induced by PEG addition (-0.55 MPa) or under control conditions for 7 days in hydroponic pure solution. According to our results, water stress severity was alleviated by using the A25 rootstock in grafted plants (A/A25), which indicated that mechanisms stimulated by roots are essential to withstand stress. A/A25 had a bigger root biomass compared with plants A and A/A that resulted in better water absorption, water retention capacity and a sustained CO2 assimilation rate. Consequently, plants A/A25 had a better carbon balance, supported by greater nitrate reductase activity located mainly in leaves. In the non-grafted and self-grafted plants, the photosynthesis rate lowered due to stomatal closure, which limited transpiration. Consequently, part of NO3- uptake was reduced in roots. This condition limited water uptake and CO2 fixation in plants A and A/A under drought stress, and accelerated oxidative damage by producing reactive oxygen species (ROS) and H2O2, which were highest in their leaves, indicating great sensitivity to drought stress and induced membrane lipid peroxidation. However, drought deleterious effects were slightly marked in plants A compared to A/A. To conclude, the A25 rootstock protects the scion against oxidative stress, which is provoked by drought, and shows better C and N balances that enabled the biomass to be maintained under water stress for short-term exposure, with higher yields in the field. es_ES
dc.description.sponsorship This work has funded by INIA (Spain) through Project RTA2017-00030-C02-00 and the European Regional Development Fund (ERDF). LL-S is a beneficiary of a doctoral fellowship (FPI-INIA). es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Plant Science es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Drought es_ES
dc.subject Gas exchange es_ES
dc.subject Grafted es_ES
dc.subject Oxidative stress es_ES
dc.subject Pepper es_ES
dc.subject Rootstock es_ES
dc.subject Water relations es_ES
dc.subject.classification PRODUCCION VEGETAL es_ES
dc.title Pepper Rootstock and Scion Physiological Responses Under Drought Stress es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fpls.2019.00038 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2013-00022-C02-00/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RTA2017-00030-C02-02/ES/Validación agronómica de accesiones y patrones híbridos para pimiento, tolerantes a estreses abióticos y bióticos. Identificación genética de estos patrones mediante microsatélites/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal es_ES
dc.description.bibliographicCitation Lopez-Serrano, L.; Canet-Sanchis, G.; Selak, G.; Penella-Casañ, C.; San Bautista Primo, A.; López Galarza, SV.; Calatayud, A. (2019). Pepper Rootstock and Scion Physiological Responses Under Drought Stress. Frontiers in Plant Science. 10:1-13. https://doi.org/10.3389/fpls.2019.00038 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fpls.2019.00038 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.identifier.eissn 1664-462X es_ES
dc.relation.pasarela S\380240 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria es_ES
dc.description.references . O. A., . N. O., & . Y. G. (2007). Effect of Grafting on Watermelon Plant Growth, Yield and Quality. Journal of Agronomy, 6(2), 362-365. doi:10.3923/ja.2007.362.365 es_ES
dc.description.references Aloni, B., Karni, L., Deventurero, G., Levin, Z., Cohen, R., Katzir, N., … Kapulnik, Y. (2008). POSSIBLE MECHANISMS FOR GRAFT INCOMPATIBILITY BETWEEN MELON SCIONS AND PUMPKIN ROOTSTOCKS. Acta Horticulturae, (782), 313-324. doi:10.17660/actahortic.2008.782.39 es_ES
dc.description.references Anjum, S. A., Farooq, M., Xie, X., Liu, X., & Ijaz, M. F. (2012). Antioxidant defense system and proline accumulation enables hot pepper to perform better under drought. Scientia Horticulturae, 140, 66-73. doi:10.1016/j.scienta.2012.03.028 es_ES
dc.description.references Asada, K. (1999). THE WATER-WATER CYCLE IN CHLOROPLASTS: Scavenging of Active Oxygens and Dissipation of Excess Photons. Annual Review of Plant Physiology and Plant Molecular Biology, 50(1), 601-639. doi:10.1146/annurev.arplant.50.1.601 es_ES
dc.description.references Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206-216. doi:10.1016/j.envexpbot.2005.12.006 es_ES
dc.description.references Borsani, O., Valpuesta, V., & Botella, M. A. (2003). Plant Cell, Tissue and Organ Culture, 73(2), 101-115. doi:10.1023/a:1022849200433 es_ES
dc.description.references Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30. doi:10.1016/s0023-6438(95)80008-5 es_ES
dc.description.references Cantero-Navarro, E., Romero-Aranda, R., Fernández-Muñoz, R., Martínez-Andújar, C., Pérez-Alfocea, F., & Albacete, A. (2016). Improving agronomic water use efficiency in tomato by rootstock-mediated hormonal regulation of leaf biomass. Plant Science, 251, 90-100. doi:10.1016/j.plantsci.2016.03.001 es_ES
dc.description.references CHOUKA, A., & JEBARI, H. (1999). EFFECT OF GRAFTING ON WATERMELON VEGETATIVE AND ROOT DEVELOPMENT, PRODUCTION AND FRUIT QUALITY. Acta Horticulturae, (492), 85-94. doi:10.17660/actahortic.1999.492.10 es_ES
dc.description.references Colla, G., Rouphael, Y., Leonardi, C., & Bie, Z. (2010). Role of grafting in vegetable crops grown under saline conditions. Scientia Horticulturae, 127(2), 147-155. doi:10.1016/j.scienta.2010.08.004 es_ES
dc.description.references Correia, M. J., Fonseca, F., Azedo-Silva, J., Dias, C., David, M. M., Barrote, I., … Osorio, J. (2005). Effects of water deficit on the activity of nitrate reductase and content of sugars, nitrate and free amino acids in the leaves and roots of sunflower and white lupin plants growing under two nutrient supply regimes. Physiologia Plantarum, 124(1), 61-70. doi:10.1111/j.1399-3054.2005.00486.x es_ES
dc.description.references Cuartero, J., Bolarín, M. C., Asíns, M. J., & Moreno, V. (2006). Increasing salt tolerance in the tomato. Journal of Experimental Botany, 57(5), 1045-1058. doi:10.1093/jxb/erj102 es_ES
dc.description.references Delfine, S., Tognetti, R., Loreto, F., & Alvino, A. (2002). Physiological and growth responses to water stress in Field-grown bell pepper (Capsicum annuumL.). The Journal of Horticultural Science and Biotechnology, 77(6), 697-704. doi:10.1080/14620316.2002.11511559 es_ES
dc.description.references DHINDSA, R. S., PLUMB-DHINDSA, P., & THORPE, T. A. (1981). Leaf Senescence: Correlated with Increased Levels of Membrane Permeability and Lipid Peroxidation, and Decreased Levels of Superoxide Dismutase and Catalase. Journal of Experimental Botany, 32(1), 93-101. doi:10.1093/jxb/32.1.93 es_ES
dc.description.references Estan, M. T. (2005). Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. Journal of Experimental Botany, 56(412), 703-712. doi:10.1093/jxb/eri027 es_ES
dc.description.references Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., … Huang, J. (2017). Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01147 es_ES
dc.description.references Feller, U., & Vaseva, I. I. (2014). Extreme climatic events: impacts of drought and high temperature on physiological processes in agronomically important plants. Frontiers in Environmental Science, 2. doi:10.3389/fenvs.2014.00039 es_ES
dc.description.references Ferrario, S., Valadier, M.-H., Morot-Gaudry, J.-F., & Foyer, C. (1995). Effects of constitutive expression of nitrate reductase in transgenic Nicotiana plumbaginifolia L. in response to varying nitrogen supply. Planta, 196(2). doi:10.1007/bf00201387 es_ES
dc.description.references Finckh, M. R. (s. f.). Integration of breeding and technology into diversification strategies for disease control in modern agriculture. Sustainable disease management in a European context, 399-409. doi:10.1007/978-1-4020-8780-6_19 es_ES
dc.description.references Flexas, J., Barón, M., Bota, J., Ducruet, J.-M., Gallé, A., Galmés, J., … Medrano, H. (2009). Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri×V. rupestris). Journal of Experimental Botany, 60(8), 2361-2377. doi:10.1093/jxb/erp069 es_ES
dc.description.references Flexas, J., Bota, J., Loreto, F., Cornic, G., & Sharkey, T. D. (2004). Diffusive and Metabolic Limitations to Photosynthesis under Drought and Salinity in C 3 Plants. Plant Biology, 6(3), 269-279. doi:10.1055/s-2004-820867 es_ES
dc.description.references Garcı́a-Mata, C., & Lamattina, L. (2001). Nitric Oxide Induces Stomatal Closure and Enhances the Adaptive Plant Responses against Drought Stress. Plant Physiology, 126(3), 1196-1204. doi:10.1104/pp.126.3.1196 es_ES
dc.description.references Vahdati, K., & Lotfi, N. (2013). Abiotic Stress Tolerance in Plants with Emphasizing on Drought and Salinity Stresses in Walnut. Abiotic Stress - Plant Responses and Applications in Agriculture. doi:10.5772/56078 es_ES
dc.description.references Gilliham, M., Able, J. A., & Roy, S. J. (2017). Translating knowledge about abiotic stress tolerance to breeding programmes. The Plant Journal, 90(5), 898-917. doi:10.1111/tpj.13456 es_ES
dc.description.references Hageman, R. H., & Hucklesby, D. P. (1971). [45] Nitrate reductase from higher plants. Photosynthesis and Nitrogen Part A, 491-503. doi:10.1016/s0076-6879(71)23121-9 es_ES
dc.description.references Haroldsen, V. M., Szczerba, M. W., Aktas, H., Lopez-Baltazar, J., Odias, M. J., Chi-Ham, C. L., … Powell, A. L. T. (2012). Mobility of Transgenic Nucleic Acids and Proteins within Grafted Rootstocks for Agricultural Improvement. Frontiers in Plant Science, 3. doi:10.3389/fpls.2012.00039 es_ES
dc.description.references He, Y., Zhu, Z., Yang, J., Ni, X., & Zhu, B. (2009). Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environmental and Experimental Botany, 66(2), 270-278. doi:10.1016/j.envexpbot.2009.02.007 es_ES
dc.description.references Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. Archives of Biochemistry and Biophysics, 125(3), 850-857. doi:10.1016/0003-9861(68)90523-7 es_ES
dc.description.references Hsiao, T. C., & Xu, L. (2000). Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. Journal of Experimental Botany, 51(350), 1595-1616. doi:10.1093/jexbot/51.350.1595 es_ES
dc.description.references Jaworski, E. G. (1971). Nitrate reductase assay in intact plant tissues. Biochemical and Biophysical Research Communications, 43(6), 1274-1279. doi:10.1016/s0006-291x(71)80010-4 es_ES
dc.description.references Kaiser, W. M., & Huber, S. C. (2001). Post‐translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers. Journal of Experimental Botany, 52(363), 1981-1989. doi:10.1093/jexbot/52.363.1981 es_ES
dc.description.references Keleş, Y., & Öncel, I. (2002). Response of antioxidative defence system to temperature and water stress combinations in wheat seedlings. Plant Science, 163(4), 783-790. doi:10.1016/s0168-9452(02)00213-3 es_ES
dc.description.references Özkum, D., & Tipirdamaz, R. (2010). Effects of l-Proline and Cold Treatment on Pepper (Capsicum annuum L.) Anther Culture. Survival and Sustainability, 137-143. doi:10.1007/978-3-540-95991-5_14 es_ES
dc.description.references Koevoets, I. T., Venema, J. H., Elzenga, J. T. M., & Testerink, C. (2016). Roots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance. Frontiers in Plant Science, 07. doi:10.3389/fpls.2016.01335 es_ES
dc.description.references Kumar, P., Rouphael, Y., Cardarelli, M., & Colla, G. (2017). Vegetable Grafting as a Tool to Improve Drought Resistance and Water Use Efficiency. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01130 es_ES
dc.description.references Kyriacou, M. C., Rouphael, Y., Colla, G., Zrenner, R., & Schwarz, D. (2017). Vegetable Grafting: The Implications of a Growing Agronomic Imperative for Vegetable Fruit Quality and Nutritive Value. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.00741 es_ES
dc.description.references Lamaoui, M., Jemo, M., Datla, R., & Bekkaoui, F. (2018). Heat and Drought Stresses in Crops and Approaches for Their Mitigation. Frontiers in Chemistry, 6. doi:10.3389/fchem.2018.00026 es_ES
dc.description.references Lammerts van Bueren, E. T., Jones, S. S., Tamm, L., Murphy, K. M., Myers, J. R., Leifert, C., & Messmer, M. M. (2011). The need to breed crop varieties suitable for organic farming, using wheat, tomato and broccoli as examples: A review. NJAS - Wageningen Journal of Life Sciences, 58(3-4), 193-205. doi:10.1016/j.njas.2010.04.001 es_ES
dc.description.references Lee, J.-M., Kubota, C., Tsao, S. J., Bie, Z., Echevarria, P. H., Morra, L., & Oda, M. (2010). Current status of vegetable grafting: Diffusion, grafting techniques, automation. Scientia Horticulturae, 127(2), 93-105. doi:10.1016/j.scienta.2010.08.003 es_ES
dc.description.references Lexa, M., & Cheeseman, J. M. (1997). Growth and nitrogen relations in reciprocal grafts of wild-type and nitrate reductase-deficient mutants of pea (Pisum sativumL. var. Juneau). Journal of Experimental Botany, 48(6), 1241-1250. doi:10.1093/jxb/48.6.1241 es_ES
dc.description.references LI, H., LIU, S., YI, C., WANG, F., ZHOU, J., XIA, X., … YU, J. (2014). Hydrogen peroxide mediates abscisic acid‐induced HSP 70 accumulation and heat tolerance in grafted cucumber plants. Plant, Cell & Environment, 37(12), 2768-2780. doi:10.1111/pce.12360 es_ES
dc.description.references Lillo, C., Meyer, C., Lea, U. S., Provan, F., & Oltedal, S. (2004). Mechanism and importance of post-translational regulation of nitrate reductase. Journal of Experimental Botany, 55(401), 1275-1282. doi:10.1093/jxb/erh132 es_ES
dc.description.references Liu, S., Li, H., Lv, X., Ahammed, G. J., Xia, X., Zhou, J., … Zhou, Y. (2016). Grafting cucumber onto luffa improves drought tolerance by increasing ABA biosynthesis and sensitivity. Scientific Reports, 6(1). doi:10.1038/srep20212 es_ES
dc.description.references Loggini, B., Scartazza, A., Brugnoli, E., & Navari-Izzo, F. (1999). Antioxidative Defense System, Pigment Composition, and Photosynthetic Efficiency in Two Wheat Cultivars Subjected to Drought. Plant Physiology, 119(3), 1091-1100. doi:10.1104/pp.119.3.1091 es_ES
dc.description.references Martı́nez-Ballesta, M. C., Martı́nez, V., & Carvajal, M. (2004). Osmotic adjustment, water relations and gas exchange in pepper plants grown under NaCl or KCl. Environmental and Experimental Botany, 52(2), 161-174. doi:10.1016/j.envexpbot.2004.01.012 es_ES
dc.description.references Martinez-Rodriguez, M. M., Estañ, M. T., Moyano, E., Garcia-Abellan, J. O., Flores, F. B., Campos, J. F., … Bolarín, M. C. (2008). The effectiveness of grafting to improve salt tolerance in tomato when an ‘excluder’ genotype is used as scion. Environmental and Experimental Botany, 63(1-3), 392-401. doi:10.1016/j.envexpbot.2007.12.007 es_ES
dc.description.references Munns, R., Husain, S., Rivelli, A. R., James, R. A., Condon, A. G. T., Lindsay, M. P., … Hare, R. A. (2002). Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. Progress in Plant Nutrition: Plenary Lectures of the XIV International Plant Nutrition Colloquium, 93-105. doi:10.1007/978-94-017-2789-1_7 es_ES
dc.description.references Navarro, J. M., Garrido, C., Martínez, V., & Carvajal, M. (2003). Water relations and xylem transport of nutrients in pepper plants grown under two different salts stress regimes. Plant Growth Regulation, 41(3), 237-245. doi:10.1023/b:grow.0000007515.72795.c5 es_ES
dc.description.references Orsini, F., Sanoubar, R., Oztekin, G. B., Kappel, N., Tepecik, M., Quacquarelli, C., … Gianquinto, G. (2013). Improved stomatal regulation and ion partitioning boosts salt tolerance in grafted melon. Functional Plant Biology, 40(6), 628. doi:10.1071/fp12350 es_ES
dc.description.references Penella, C., Landi, M., Guidi, L., Nebauer, S. G., Pellegrini, E., Bautista, A. S., … Calatayud, A. (2016). Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength. Journal of Plant Physiology, 193, 1-11. doi:10.1016/j.jplph.2016.02.007 es_ES
dc.description.references Penella, C., Nebauer, S. G., López-Galarza, S., Quiñones, A., San Bautista, A., & Calatayud, Á. (2017). Grafting pepper onto tolerant rootstocks: An environmental-friendly technique overcome water and salt stress. Scientia Horticulturae, 226, 33-41. doi:10.1016/j.scienta.2017.08.020 es_ES
dc.description.references Penella, C., Nebauer, S. G., López-Galarza, S., SanBautista, A., Rodríguez-Burruezo, A., & Calatayud, A. (2014). Evaluation of some pepper genotypes as rootstocks in water stress conditions. Horticultural Science, 41(No. 4), 192-200. doi:10.17221/163/2013-hortsci es_ES
dc.description.references Penella, C., Nebauer, S. G., Bautista, A. S., López-Galarza, S., & Calatayud, Á. (2014). Rootstock alleviates PEG-induced water stress in grafted pepper seedlings: Physiological responses. Journal of Plant Physiology, 171(10), 842-851. doi:10.1016/j.jplph.2014.01.013 es_ES
dc.description.references Reddy, A. R., Chaitanya, K. V., & Vivekanandan, M. (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161(11), 1189-1202. doi:10.1016/j.jplph.2004.01.013 es_ES
dc.description.references Rivero, R. M., Ruiz, J. M., & Romero, L. (2003). Can grafting in tomato plants strengthen resistance to thermal stress? Journal of the Science of Food and Agriculture, 83(13), 1315-1319. doi:10.1002/jsfa.1541 es_ES
dc.description.references Rivero, R. M., Ruiz, J. M., Sánchez, E., & Romero, L. (2002). Does grafting provide tomato plants an advantage against H2 O2 production under conditions of thermal shock? Physiologia Plantarum, 117(1), 44-50. doi:10.1034/j.1399-3054.2003.1170105.x es_ES
dc.description.references Colla, G., Rouphael, Y., Cardarelli, M., Massa, D., Salerno, A., & Rea, E. (2006). Yield, fruit quality and mineral composition of grafted melon plants grown under saline conditions. The Journal of Horticultural Science and Biotechnology, 81(1), 146-152. doi:10.1080/14620316.2006.11512041 es_ES
dc.description.references Sade, N., Gebremedhin, A., & Moshelion, M. (2012). Risk-taking plants. Plant Signaling & Behavior, 7(7), 767-770. doi:10.4161/psb.20505 es_ES
dc.description.references Sairam, R. K., & Srivastava, G. C. (2001). Water Stress Tolerance of Wheat (Triticum aestivum L.): Variations in Hydrogen Peroxide Accumulation and Antioxidant Activity in Tolerant and Susceptible Genotypes. Journal of Agronomy and Crop Science, 186(1), 63-70. doi:10.1046/j.1439-037x.2001.00461.x es_ES
dc.description.references Sánchez-Rodríguez, E., Leyva, R., Constán-Aguilar, C., Romero, L., & Ruiz, J. M. (2014). How does grafting affect the ionome of cherry tomato plants under water stress? Soil Science and Plant Nutrition, 60(2), 145-155. doi:10.1080/00380768.2013.870873 es_ES
dc.description.references Sánchez-Rodríguez, E., Romero, L., & Ruiz, J. M. (2013). Role of Grafting in Resistance to Water Stress in Tomato Plants: Ammonia Production and Assimilation. Journal of Plant Growth Regulation, 32(4), 831-842. doi:10.1007/s00344-013-9348-2 es_ES
dc.description.references Sánchez-Rodríguez, E., Rubio-Wilhelmi, M. del M., Blasco, B., Leyva, R., Romero, L., & Ruiz, J. M. (2012). Antioxidant response resides in the shoot in reciprocal grafts of drought-tolerant and drought-sensitive cultivars in tomato under water stress. Plant Science, 188-189, 89-96. doi:10.1016/j.plantsci.2011.12.019 es_ES
dc.description.references Savvas, D., Colla, G., Rouphael, Y., & Schwarz, D. (2010). Amelioration of heavy metal and nutrient stress in fruit vegetables by grafting. Scientia Horticulturae, 127(2), 156-161. doi:10.1016/j.scienta.2010.09.011 es_ES
dc.description.references Savvas, D., Savva, A., Ntatsi, G., Ropokis, A., Karapanos, I., Krumbein, A., & Olympios, C. (2010). Effects of three commercial rootstocks on mineral nutrition, fruit yield, and quality of salinized tomato. Journal of Plant Nutrition and Soil Science, 174(1), 154-162. doi:10.1002/jpln.201000099 es_ES
dc.description.references Scheurwater, I. (2002). The contribution of roots and shoots to whole plant nitrate reduction in fast- and slow-growing grass species. Journal of Experimental Botany, 53(374), 1635-1642. doi:10.1093/jxb/erf008 es_ES
dc.description.references Schwarz, D., Rouphael, Y., Colla, G., & Venema, J. H. (2010). Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. Scientia Horticulturae, 127(2), 162-171. doi:10.1016/j.scienta.2010.09.016 es_ES
dc.description.references Sharp, R. E., Wu, Y., Voetberg, G. S., Saab, I. N., & LeNoble, M. E. (1994). Confirmation that abscisic acid accumulation is required for maize primary root elongation at low water potentials. Journal of Experimental Botany, 45(Special_Issue), 1743-1751. doi:10.1093/jxb/45.special_issue.1743 es_ES
dc.description.references Silva, C., Martinez, V., & Carvajal, M. (2008). Osmotic versus toxic effects of NaCl on pepper plants. Biologia plantarum, 52(1), 72-79. doi:10.1007/s10535-008-0010-y es_ES
dc.description.references Tardieu, F. (1998). Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. Journal of Experimental Botany, 49(90001), 419-432. doi:10.1093/jexbot/49.suppl_1.419 es_ES
dc.description.references Urban, L., Aarrouf, J., & Bidel, L. P. R. (2017). Assessing the Effects of Water Deficit on Photosynthesis Using Parameters Derived from Measurements of Leaf Gas Exchange and of Chlorophyll a Fluorescence. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.02068 es_ES
dc.description.references Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Science, 151(1), 59-66. doi:10.1016/s0168-9452(99)00197-1 es_ES
dc.description.references Westgate, M. E., & Boyer, J. S. (1985). Osmotic adjustment and the inhibition of leaf, root, stem and silk growth at low water potentials in maize. Planta, 164(4), 540-549. doi:10.1007/bf00395973 es_ES
dc.description.references Yao, X., Yang, R., Zhao, F., Wang, S., Li, C., & Zhao, W. (2016). An analysis of physiological index of differences in drought tolerance of tomato rootstock seedlings. Journal of Plant Biology, 59(4), 311-321. doi:10.1007/s12374-016-0071-y es_ES
dc.description.references Yousfi, S., Serret, M. D., Márquez, A. J., Voltas, J., & Araus, J. L. (2012). Combined use of δ13C, δ18O and δ15N tracks nitrogen metabolism and genotypic adaptation of durum wheat to salinity and water deficit. New Phytologist, 194(1), 230-244. doi:10.1111/j.1469-8137.2011.04036.x es_ES


This item appears in the following Collection(s)

Show simple item record