- -

Osteogenic differentiation of mesenchymal stem cells using hybrid nanofibers with different configurations and dimensionality

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Osteogenic differentiation of mesenchymal stem cells using hybrid nanofibers with different configurations and dimensionality

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gugutkov, Dencho es_ES
dc.contributor.author Awaja, Firas es_ES
dc.contributor.author Belemezova, Kalina es_ES
dc.contributor.author Keremidarska, Milena es_ES
dc.contributor.author Krasteva, Natalia es_ES
dc.contributor.author Kyurkchiev, Stanimir es_ES
dc.contributor.author Gallego-Ferrer, Gloria es_ES
dc.contributor.author Seker, Sukran es_ES
dc.contributor.author Elcin, Ayse Eser es_ES
dc.contributor.author Elçin, Yasar Murat es_ES
dc.contributor.author Altankov, George es_ES
dc.date.accessioned 2020-04-17T12:51:05Z
dc.date.available 2020-04-17T12:51:05Z
dc.date.issued 2017 es_ES
dc.identifier.issn 1549-3296 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140939
dc.description.abstract [EN] Novel, hybrid fibrinogen/polylactic acid (FBG/PLA) nanofibers with different configuration (random vs aligned) and dimensionality (2¿D vs 3¿D environment) were used to control the overall behavior and the osteogenic differentiation of human adipose¿derived mesenchymal stem cells (ADMSCs). Aligned nanofibers in both the 2¿D and 3¿D configurations are proved to be favored for osteodifferentiation. Morphologically, we found that on randomly configured nanofibers, the cells developed a stellate¿like morphology with multiple projections; however, time¿lapse analysis showed significantly diminished cell movements. Conversely, an elongated cell shape with advanced cell spreading and extended actin cytoskeleton accompanied with significantly increased cell mobility were observed when cells attached on aligned nanofibers. Moreover, a clear tendency for higher alkaline phosphatase activity was also found on aligned fibers when ADMSCs were switched to osteogenic induction medium. The strongest accumulation of Alizarin red (AR) and von Kossa stain at 21 days of culture in osteogenic medium were found on 3¿D aligned constructs while the rest showed lower and rather undistinguishable activity. Quantitative reverse transcription¿polymerase chain reaction analysis for Osteopontin (OSP) and RUNX 2 generally confirmed this trend showing favorable expression of osteogenic genes activity in 3¿D environment particularly in aligned configuration. es_ES
dc.description.sponsorship Contract grant sponsor: CIBER-BBN Spain (project BIOSURFACES) Contract grant sponsor: European Commission through the FP7 Industry-Academia Partnerships and Pathways (IAPP) project FIBROGELNET; contract grant number: PAP-GA-2012-324386 Contract grant sponsor: Spanish Ministry of Economy and Competitiveness; contract grant number: MAT 2015-69315-C3 MYOHEAL Contract grant sponsor: The Scientific and Technological Research Council of Turkey (TUBITAK); contract grant number: 11S497 es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Journal of Biomedical Materials Research Part A es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Mesenchymal stem cells es_ES
dc.subject Nanofibers es_ES
dc.subject Osteogenic es_ES
dc.subject Fibrinogen es_ES
dc.subject Cell movements es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Osteogenic differentiation of mesenchymal stem cells using hybrid nanofibers with different configurations and dimensionality es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/jbm.a.36065 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/324386/EU/Network for Development of Soft Nanofibrous Construct for Cellular Therapy of Degenerative Skeletal Disorders/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-69315-C3-2-R/ES/REMODELACION POR MIOBLASTOS DE LA MATRIZ EXTRACELULAR EN LA INTERFAZ CELULA-BIOMATERIAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/TUBITAK//11S497/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-69315-C3-1-R/ES/SOPORTES CELULARES BIODEGRADABLES CARGADOS CON IONES BIOACTIVOS PARA REGENERACION MUSCULAR/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Gugutkov, D.; Awaja, F.; Belemezova, K.; Keremidarska, M.; Krasteva, N.; Kyurkchiev, S.; Gallego-Ferrer, G.... (2017). Osteogenic differentiation of mesenchymal stem cells using hybrid nanofibers with different configurations and dimensionality. Journal of Biomedical Materials Research Part A. 105(7):2065-2074. https://doi.org/10.1002/jbm.a.36065 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/jbm.a.36065 es_ES
dc.description.upvformatpinicio 2065 es_ES
dc.description.upvformatpfin 2074 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 105 es_ES
dc.description.issue 7 es_ES
dc.relation.pasarela S\357246 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Technological Research Council of Turkey es_ES
dc.contributor.funder Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina es_ES
dc.description.references Amini, A. R., Laurencin, C. T., & Nukavarapu, S. P. (2012). Bone Tissue Engineering: Recent Advances and Challenges. Critical Reviews in Biomedical Engineering, 40(5), 363-408. doi:10.1615/critrevbiomedeng.v40.i5.10 es_ES
dc.description.references JOSE, M., THOMAS, V., JOHNSON, K., DEAN, D., & NYAIRO, E. (2009). Aligned PLGA/HA nanofibrous nanocomposite scaffolds for bone tissue engineering. Acta Biomaterialia, 5(1), 305-315. doi:10.1016/j.actbio.2008.07.019 es_ES
dc.description.references Cai, Y.-Z., Zhang, G.-R., Wang, L.-L., Jiang, Y.-Z., Ouyang, H.-W., & Zou, X.-H. (2012). Novel biodegradable three-dimensional macroporous scaffold using aligned electrospun nanofibrous yarns for bone tissue engineering. Journal of Biomedical Materials Research Part A, 100A(5), 1187-1194. doi:10.1002/jbm.a.34063 es_ES
dc.description.references Wang, X., Ding, B., & Li, B. (2013). Biomimetic electrospun nanofibrous structures for tissue engineering. Materials Today, 16(6), 229-241. doi:10.1016/j.mattod.2013.06.005 es_ES
dc.description.references Vasita, R., & Katti, D. S. (2006). Nanofibers and their applications in tissue engineering. International Journal of Nanomedicine, 1(1), 15-30. doi:10.2147/nano.2006.1.1.15 es_ES
dc.description.references Wade, R. J., & Burdick, J. A. (2012). Engineering ECM signals into biomaterials. Materials Today, 15(10), 454-459. doi:10.1016/s1369-7021(12)70197-9 es_ES
dc.description.references Zhang, Y., Venugopal, J. R., El-Turki, A., Ramakrishna, S., Su, B., & Lim, C. T. (2008). Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials, 29(32), 4314-4322. doi:10.1016/j.biomaterials.2008.07.038 es_ES
dc.description.references Jia, S., Liu, L., Pan, W., Meng, G., Duan, C., Zhang, L., … Liu, J. (2012). Oriented cartilage extracellular matrix-derived scaffold for cartilage tissue engineering. Journal of Bioscience and Bioengineering, 113(5), 647-653. doi:10.1016/j.jbiosc.2011.12.009 es_ES
dc.description.references Klein, T. J., Malda, J., Sah, R. L., & Hutmacher, D. W. (2009). Tissue Engineering of Articular Cartilage with Biomimetic Zones. Tissue Engineering Part B: Reviews, 15(2), 143-157. doi:10.1089/ten.teb.2008.0563 es_ES
dc.description.references Li, W.-J., Mauck, R. L., Cooper, J. A., Yuan, X., & Tuan, R. S. (2007). Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. Journal of Biomechanics, 40(8), 1686-1693. doi:10.1016/j.jbiomech.2006.09.004 es_ES
dc.description.references Xu, C. (2004). Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials, 25(5), 877-886. doi:10.1016/s0142-9612(03)00593-3 es_ES
dc.description.references Lee, C. H., Shin, H. J., Cho, I. H., Kang, Y.-M., Kim, I. A., Park, K.-D., & Shin, J.-W. (2005). Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials, 26(11), 1261-1270. doi:10.1016/j.biomaterials.2004.04.037 es_ES
dc.description.references Yang, X., Chen, X., & Wang, H. (2009). Acceleration of Osteogenic Differentiation of Preosteoblastic Cells by Chitosan Containing Nanofibrous Scaffolds. Biomacromolecules, 10(10), 2772-2778. doi:10.1021/bm900623j es_ES
dc.description.references Zhang, Y., Yang, F., Liu, K., Shen, H., Zhu, Y., Zhang, W., … Zhou, G. (2012). The impact of PLGA scaffold orientation on in vitro cartilage regeneration. Biomaterials, 33(10), 2926-2935. doi:10.1016/j.biomaterials.2012.01.006 es_ES
dc.description.references Dragoo, J. L., Samimi, B., Zhu, M., Hame, S. L., Thomas, B. J., Lieberman, J. R., … Benhaim, P. (2003). Tissue-engineered cartilage and bone using stem cells from human infrapatellar fat pads. The Journal of Bone and Joint Surgery. British volume, 85-B(5), 740-747. doi:10.1302/0301-620x.85b5.13587 es_ES
dc.description.references Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., … Hedrick, M. H. (2001). Multilineage Cells from Human Adipose Tissue: Implications for Cell-Based Therapies. Tissue Engineering, 7(2), 211-228. doi:10.1089/107632701300062859 es_ES
dc.description.references Gugutkov, D., Gustavsson, J., Cantini, M., Salmeron-Sánchez, M., & Altankov, G. (2016). Electrospun fibrinogen-PLA nanofibres for vascular tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 11(10), 2774-2784. doi:10.1002/term.2172 es_ES
dc.description.references Gugutkov, D., Gustavsson, J., Ginebra, M. P., & Altankov, G. (2013). Fibrinogen nanofibers for guiding endothelial cell behavior. Biomaterials Science, 1(10), 1065. doi:10.1039/c3bm60124b es_ES
dc.description.references Campillo-Fernández, A. J., Unger, R. E., Peters, K., Halstenberg, S., Santos, M., Sánchez, M. S., … Kirkpatrick, C. J. (2009). Analysis of the Biological Response of Endothelial and Fibroblast Cells Cultured on Synthetic Scaffolds with Various Hydrophilic/Hydrophobic Ratios: Influence of Fibronectin Adsorption and Conformation. Tissue Engineering Part A, 15(6), 1331-1341. doi:10.1089/ten.tea.2008.0146 es_ES
dc.description.references Gugutkov, D., González-García, C., Altankov, G., & Salmerón-Sánchez, M. (2011). Fibrinogen organization at the cell-material interface directs endothelial cell behavior. Journal of Bioactive and Compatible Polymers, 26(4), 375-387. doi:10.1177/0883911511409020 es_ES
dc.description.references Coelho, N. M., González-García, C., Salmerón-Sánchez, M., & Altankov, G. (2011). Arrangement of Type IV Collagen and Laminin on Substrates with Controlled Density of –OH Groups. Tissue Engineering Part A, 17(17-18), 2245-2257. doi:10.1089/ten.tea.2010.0713 es_ES
dc.description.references Sancho-Tello, M., Forriol, F., Gastaldi, P., Ruiz-Saurí, A., Martín de Llano, J. J., Novella-Maestre, E., … Carda, C. (2015). Time Evolution ofin VivoArticular Cartilage Repair Induced by Bone Marrow Stimulation and Scaffold Implantation in Rabbits. The International Journal of Artificial Organs, 38(4), 210-223. doi:10.5301/ijao.5000404 es_ES
dc.description.references Alió del Barrio, J. L., Chiesa, M., Gallego Ferrer, G., Garagorri, N., Briz, N., Fernandez-Delgado, J., … De Miguel, M. P. (2014). Biointegration of corneal macroporous membranes based on poly(ethyl acrylate) copolymers in an experimental animal model. Journal of Biomedical Materials Research Part A, 103(3), 1106-1118. doi:10.1002/jbm.a.35249 es_ES
dc.description.references Martínez‐Ramos, C., Vallés‐Lluch, A., Verdugo, J. M. G., Ribelles, J. L. G., Barcia Albacar, J. A., Orts, A. B., … Pradas, M. M. (2012). Channeled scaffolds implanted in adult rat brain. Journal of Biomedical Materials Research Part A, 100A(12), 3276-3286. doi:10.1002/jbm.a.34273 es_ES
dc.description.references MOSESSON, M. W. (2005). Fibrinogen and fibrin structure and functions. Journal of Thrombosis and Haemostasis, 3(8), 1894-1904. doi:10.1111/j.1538-7836.2005.01365.x es_ES
dc.description.references Lisman, T. (2005). Platelet aggregation: involvement of thrombin and fibrin(ogen). Frontiers in Bioscience, 10(1-3), 2504. doi:10.2741/1715 es_ES
dc.description.references Weisel, J. W. (2005). Fibrinogen and Fibrin. Advances in Protein Chemistry, 247-299. doi:10.1016/s0065-3233(05)70008-5 es_ES
dc.description.references Raghow, R. (1994). The role of extracellular matrix in postinflammatory wound healing and fibrosis. The FASEB Journal, 8(11), 823-831. doi:10.1096/fasebj.8.11.8070631 es_ES
dc.description.references Chen, X., Fu, X., Shi, J., & Wang, H. (2013). Regulation of the osteogenesis of pre-osteoblasts by spatial arrangement of electrospun nanofibers in two- and three-dimensional environments. Nanomedicine: Nanotechnology, Biology and Medicine, 9(8), 1283-1292. doi:10.1016/j.nano.2013.04.013 es_ES
dc.description.references Long, M. W. (2001). Osteogenesis and Bone-Marrow-Derived Cells. Blood Cells, Molecules, and Diseases, 27(3), 677-690. doi:10.1006/bcmd.2001.0431 es_ES
dc.description.references He, C., Xu, X., Zhang, F., Cao, L., Feng, W., Wang, H., & Mo, X. (2011). Fabrication of fibrinogen/P(LLA-CL) hybrid nanofibrous scaffold for potential soft tissue engineering applications. Journal of Biomedical Materials Research Part A, 97A(3), 339-347. doi:10.1002/jbm.a.33067 es_ES
dc.description.references Fee, T., Surianarayanan, S., Downs, C., Zhou, Y., & Berry, J. (2016). Nanofiber Alignment Regulates NIH3T3 Cell Orientation and Cytoskeletal Gene Expression on Electrospun PCL+Gelatin Nanofibers. PLOS ONE, 11(5), e0154806. doi:10.1371/journal.pone.0154806 es_ES
dc.description.references Forget, J., Awaja, F., Gugutkov, D., Gustavsson, J., Gallego Ferrer, G., Coelho-Sampaio, T., … Altankov, G. (2016). Differentiation of Human Mesenchymal Stem Cells Toward Quality Cartilage Using Fibrinogen-Based Nanofibers. Macromolecular Bioscience, 16(9), 1348-1359. doi:10.1002/mabi.201600080 es_ES
dc.description.references Shapiro, F. (2008). Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. European Cells and Materials, 15, 53-76. doi:10.22203/ecm.v015a05 es_ES
dc.description.references Jones, S. J., Boyde, A., & Pawley, J. B. (1975). Osteoblasts and collagen orientation. Cell and Tissue Research, 159(1). doi:10.1007/bf00231996 es_ES
dc.description.references Ng, C. P. (2005). Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. Journal of Cell Science, 118(20), 4731-4739. doi:10.1242/jcs.02605 es_ES
dc.description.references Ito, A., Takizawa, Y., Honda, H., Hata, K., Kagami, H., Ueda, M., & Kobayashi, T. (2004). Tissue Engineering Using Magnetite Nanoparticles and Magnetic Force: Heterotypic Layers of Cocultured Hepatocytes and Endothelial Cells. Tissue Engineering, 10(5-6), 833-840. doi:10.1089/1076327041348301 es_ES
dc.description.references Radisic, M., Park, H., Shing, H., Consi, T., Schoen, F. J., Langer, R., … Vunjak-Novakovic, G. (2004). Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proceedings of the National Academy of Sciences, 101(52), 18129-18134. doi:10.1073/pnas.0407817101 es_ES
dc.description.references Xing, Q., Zhao, F., Chen, S., McNamara, J., DeCoster, M. A., & Lvov, Y. M. (2010). Porous biocompatible three-dimensional scaffolds of cellulose microfiber/gelatin composites for cell culture. Acta Biomaterialia, 6(6), 2132-2139. doi:10.1016/j.actbio.2009.12.036 es_ES
dc.description.references Aubin, H., Nichol, J. W., Hutson, C. B., Bae, H., Sieminski, A. L., Cropek, D. M., … Khademhosseini, A. (2010). Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials, 31(27), 6941-6951. doi:10.1016/j.biomaterials.2010.05.056 es_ES
dc.description.references Norman, J. J., & Desai, T. A. (2005). Control of Cellular Organization in Three Dimensions Using a Microfabricated Polydimethylsiloxane–Collagen Composite Tissue Scaffold. Tissue Engineering, 11(3-4), 378-386. doi:10.1089/ten.2005.11.378 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem