- -

Synergy of the combination of titanate nanotubes with titania nanoparticles for the photocatalytic hydrogen generation from water-methanol mixture using simulated sunlight

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synergy of the combination of titanate nanotubes with titania nanoparticles for the photocatalytic hydrogen generation from water-methanol mixture using simulated sunlight

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Serra, Marco es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2020-04-17T12:51:23Z
dc.date.available 2020-04-17T12:51:23Z
dc.date.issued 2014 es_ES
dc.identifier.issn 1110-662X es_ES
dc.identifier.uri http://hdl.handle.net/10251/140950
dc.description.abstract [EN] Alkali digestion of titanium nanoparticles leads, after neutralization, to the formation of titanate nanotubes with long aspect ratio. One salient change in the formation of titanate nanotubes is the observation of an extended visible absorption band up to 550 nm, responsible for their brown colour. Combination of titanate nanotubes with commercial titanium dioxide nanoparticles, either Evonik P25 or Millennium PC500, results in an enhanced photocatalytic activity for hydrogen generation from water-methanol mixtures. This synergy between the two titanium semiconductors has an optimum for a certain proportion of the two components and is observed in both the absence and the presence of platinum or gold nanoparticles. The best efficiency under simulated sunlight irradiation was for a combination of 12 wt.% titanate nanotubes containing 0.32 wt.% platinum in 88 wt.% Millennium PC500, where a two-time increase in the hydrogen generation is observed versus the activity of Millennium PC500 containing platinum. This synergy is proposed to derive from the interfacial electron transfer from titanate nanotubes undergoing photoexcitation at wavelengths in which Millennium PC500 does not absorb this form of titania nanoparticles. Our results illustrate how the combination of several titanium semiconductors can result in an enhancement efficiency with respect to their individual components. es_ES
dc.description.sponsorship Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ20212-32315) and Generalitat Valenciana (Prometeo 2012-014) is gratefully acknowledged. Marco Serra thanks the Spanish CSIC for a postgraduate scholarship. es_ES
dc.language Inglés es_ES
dc.publisher Hindawi Limited es_ES
dc.relation.ispartof International Journal of Photoenergy es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Synergy of the combination of titanate nanotubes with titania nanoparticles for the photocatalytic hydrogen generation from water-methanol mixture using simulated sunlight es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2014/426797 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F014/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Serra, M.; García Gómez, H. (2014). Synergy of the combination of titanate nanotubes with titania nanoparticles for the photocatalytic hydrogen generation from water-methanol mixture using simulated sunlight. International Journal of Photoenergy. (4267971):1-7. https://doi.org/10.1155/2014/426797 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/110.1155/2014/426797 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 7 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.issue 4267971 es_ES
dc.relation.pasarela S\285697 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Centi, G., & Perathoner, S. (2010). Towards Solar Fuels from Water and CO2. ChemSusChem, 3(2), 195-208. doi:10.1002/cssc.200900289 es_ES
dc.description.references Gust, D., Moore, T. A., & Moore, A. L. (2009). Solar Fuels via Artificial Photosynthesis. Accounts of Chemical Research, 42(12), 1890-1898. doi:10.1021/ar900209b es_ES
dc.description.references Hammarström, L. (2009). Artificial Photosynthesis and Solar Fuels. Accounts of Chemical Research, 42(12), 1859-1860. doi:10.1021/ar900267k es_ES
dc.description.references Roy, S. C., Varghese, O. K., Paulose, M., & Grimes, C. A. (2010). Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons. ACS Nano, 4(3), 1259-1278. doi:10.1021/nn9015423 es_ES
dc.description.references Khan, G., Choi, S. K., Kim, S., Lim, S. K., Jang, J. S., & Park, H. (2013). Carbon nanotubes as an auxiliary catalyst in heterojunction photocatalysis for solar hydrogen. Applied Catalysis B: Environmental, 142-143, 647-653. doi:10.1016/j.apcatb.2013.05.075 es_ES
dc.description.references Marschall, R. (2013). Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity. Advanced Functional Materials, 24(17), 2421-2440. doi:10.1002/adfm.201303214 es_ES
dc.description.references Rawal, S. B., Bera, S., Lee, D., Jang, D.-J., & Lee, W. I. (2013). Design of visible-light photocatalysts by coupling of narrow bandgap semiconductors and TiO2: effect of their relative energy band positions on the photocatalytic efficiency. Catalysis Science & Technology, 3(7), 1822. doi:10.1039/c3cy00004d es_ES
dc.description.references Wu, L., Xing, J., Hou, Y., Xiao, F. Y., Li, Z., & Yang, H. G. (2013). Fabrication of Regular ZnO/TiO2Heterojunctions with Enhanced Photocatalytic Properties. Chemistry - A European Journal, 19(26), 8393-8396. doi:10.1002/chem.201300849 es_ES
dc.description.references Sayama, K., Yoshida, R., Kusama, H., Okabe, K., Abe, Y., & Arakawa, H. (1997). Photocatalytic decomposition of water into H2 and O2 by a two-step photoexcitation reaction using a WO3 suspension catalyst and an Fe3+/Fe2+ redox system. Chemical Physics Letters, 277(4), 387-391. doi:10.1016/s0009-2614(97)00903-2 es_ES
dc.description.references Crabtree, G. W., Dresselhaus, M. S., & Buchanan, M. V. (2004). The Hydrogen Economy. Physics Today, 57(12), 39-44. doi:10.1063/1.1878333 es_ES
dc.description.references Dunn, S. (2002). Hydrogen futures: toward a sustainable energy system. International Journal of Hydrogen Energy, 27(3), 235-264. doi:10.1016/s0360-3199(01)00131-8 es_ES
dc.description.references Esswein, A. J., & Nocera, D. G. (2007). Hydrogen Production by Molecular Photocatalysis. Chemical Reviews, 107(10), 4022-4047. doi:10.1021/cr050193e es_ES
dc.description.references Jensen, S. H., Larsen, P. H., & Mogensen, M. (2007). Hydrogen and synthetic fuel production from renewable energy sources. International Journal of Hydrogen Energy, 32(15), 3253-3257. doi:10.1016/j.ijhydene.2007.04.042 es_ES
dc.description.references Navarro, R. M., Sánchez-Sánchez, M. C., Alvarez-Galvan, M. C., Valle, F. del, & Fierro, J. L. G. (2009). Hydrogen production from renewable sources: biomass and photocatalytic opportunities. Energy Environ. Sci., 2(1), 35-54. doi:10.1039/b808138g es_ES
dc.description.references Ni, M., Leung, M. K. H., Leung, D. Y. C., & Sumathy, K. (2007). A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews, 11(3), 401-425. doi:10.1016/j.rser.2005.01.009 es_ES
dc.description.references NOWOTNY, J., SORRELL, C., SHEPPARD, L., & BAK, T. (2005). Solar-hydrogen: Environmentally safe fuel for the future. International Journal of Hydrogen Energy, 30(5), 521-544. doi:10.1016/j.ijhydene.2004.06.012 es_ES
dc.description.references Tsai, C.-C., & Teng, H. (2006). Structural Features of Nanotubes Synthesized from NaOH Treatment on TiO2with Different Post-Treatments. Chemistry of Materials, 18(2), 367-373. doi:10.1021/cm0518527 es_ES
dc.description.references Chen, X., Liu, L., Yu, P. Y., & Mao, S. S. (2011). Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science, 331(6018), 746-750. doi:10.1126/science.1200448 es_ES
dc.description.references Primo, A., Marino, T., Corma, A., Molinari, R., & García, H. (2011). Efficient Visible-Light Photocatalytic Water Splitting by Minute Amounts of Gold Supported on Nanoparticulate CeO2Obtained by a Biopolymer Templating Method. Journal of the American Chemical Society, 133(18), 6930-6933. doi:10.1021/ja2011498 es_ES
dc.description.references Gomes Silva, C., Juárez, R., Marino, T., Molinari, R., & García, H. (2011). Influence of Excitation Wavelength (UV or Visible Light) on the Photocatalytic Activity of Titania Containing Gold Nanoparticles for the Generation of Hydrogen or Oxygen from Water. Journal of the American Chemical Society, 133(3), 595-602. doi:10.1021/ja1086358 es_ES
dc.description.references Bamwenda, G. R., Tsubota, S., Kobayashi, T., & Haruta, M. (1994). Photoinduced hydrogen production from an aqueous solution of ethylene glycol over ultrafine gold supported on TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 77(1), 59-67. doi:10.1016/1010-6030(94)80009-x es_ES
dc.description.references Haruta, M. (1997). Size- and support-dependency in the catalysis of gold. Catalysis Today, 36(1), 153-166. doi:10.1016/s0920-5861(96)00208-8 es_ES
dc.description.references Serpone, N., Emeline, A. V., Horikoshi, S., Kuznetsov, V. N., & Ryabchuk, V. K. (2012). On the genesis of heterogeneous photocatalysis: a brief historical perspective in the period 1910 to the mid-1980s. Photochemical & Photobiological Sciences, 11(7), 1121. doi:10.1039/c2pp25026h es_ES
dc.description.references Aprile, C., Corma, A., & Garcia, H. (2008). Enhancement of the photocatalytic activity of TiO2through spatial structuring and particle size control: from subnanometric to submillimetric length scale. Phys. Chem. Chem. Phys., 10(6), 769-783. doi:10.1039/b712168g es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem