Mostrar el registro sencillo del ítem
dc.contributor.author | Maestre-Valero, J. F. | es_ES |
dc.contributor.author | Testi, L. | es_ES |
dc.contributor.author | Jiménez Bello, Miguel Angel | es_ES |
dc.contributor.author | Castel-Sánchez, Juan Ramón | es_ES |
dc.contributor.author | Intrigliolo, D. S. | es_ES |
dc.date.accessioned | 2020-04-17T12:51:38Z | |
dc.date.available | 2020-04-17T12:51:38Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 0342-7188 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/140956 | |
dc.description.abstract | [EN] Evapotranspiration (ET) is an important component of the surface energy and hydrological balance and the main consumptive agriculture water use. Commonly used methodologies to estimate ET require validation with field data to provide accurate results. In addition, the evaluation of the net ecosystem exchange rate (F-NEE) has gained interest in recent times. There is still very little information available about carbon fluxes in citrus orchards. In this study, the eddy covariance (EC) technique was used to determine the actual evapotranspiration (ETe-ec) and the F (NEE) during three irrigated seasons over a flat citrus orchard. Actual seasonal crop coefficients (Kc-ec) were derived by ETe-ec/reference ET. Average ETe-ec for the whole experiment was 1.74 mm/day. Kc-ec showed great variation throughout the year (from 0.40 to 1.20) which was mainly associated with rainfall events. A pronounced variability within both the same season and between seasons was also observed for F-NEE. Based on 2009 data, the only year with a complete database, the citrus orchard acted as a sink for CO2, fixing 3855 kg CO2/ha/year. The results complement previous studies in large lysimeters and provide quantitative information for conducting carbon balance in citrus orchards under Mediterranean conditions. | es_ES |
dc.description.sponsorship | This research was supported by funds from projects Rideco-Consolider CDS2006-0067 and LIFE14 CCM/GR/000635-LIFE CLIMATREE. The authors would like to thank the EU and MINECO for funding, in the frame of the collaborative international consortium IRIDA financed under the ERA-NET Cofund Water-Works2014 Call. This ERA-NET is an integral part of the 2015 Joint Activities developed by the Water Challenges for a Changing World Joint Programme Initiative (Water JPI). Thanks are also due to Mr. F. Sanz (CEBAS-CSIC) for his help with the field work. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Irrigation Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | Evapotranspiration and carbon exchange in a citrus orchard using eddy covariance | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00271-017-0548-6 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//CSD2006-00067/ES/Programa integral de ahorro y mejora en la productividad del agua de riego en la horticultura española/ Ministerio de Educación y Ciencia/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC//LIFE14 CCM%2FGR%2F000635/EU/A novel approach for accounting & monitoring carbon sequestration of tree crops and their potential as carbon sink areas/LIFE CLIMATREE/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Maestre-Valero, JF.; Testi, L.; Jiménez Bello, MA.; Castel-Sánchez, JR.; Intrigliolo, DS. (2017). Evapotranspiration and carbon exchange in a citrus orchard using eddy covariance. Irrigation Science. 35(5):397-408. https://doi.org/10.1007/s00271-017-0548-6 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s00271-017-0548-6 | es_ES |
dc.description.upvformatpinicio | 397 | es_ES |
dc.description.upvformatpfin | 408 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 35 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.pasarela | S\342933 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.description.references | Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper no 56. FAO. Roma (Italia), p 300 | es_ES |
dc.description.references | Allen RG, Pereira LS, Howell TA, Jensen ME (2011) Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric Water Manage 98:899–920 | es_ES |
dc.description.references | Baldocchi DD (1997) Measuring and modelling carbon dioxide and water vapour exchange over a temperate broad-leaved forest during the 1995 summer drought. Plant Cell Environ 20:1108–1122 | es_ES |
dc.description.references | Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biol 9:479–492 | es_ES |
dc.description.references | Ballester C, Jiménez-Bello MA, Castel JR, Intrigliolo DS (2013) Usefulness of thermography for plant water stress detection in citrus and persimmon trees. Agric Forest Meteorol 168:120–129 | es_ES |
dc.description.references | Balogh J, Fóti S, Pintér K, Burri S, Eugster W, Papp M, Nagy Z (2015) Soil CO2 efflux and production rates as influenced by evapotranspiration in a dry grassland. Plant Soil 388:157–173 | es_ES |
dc.description.references | Cammalleri C, Ciraolo G, Minacapilli M, Rallo G (2013) Evapotranspiration from an olive orchard using remote sensing-based dual crop coefficient approach. Water Resour Manage 27:4877–4895 | es_ES |
dc.description.references | Castel JR, Bautista I, Ramos C, Cruz G (1987) Evapotranspiration and irrigation efficiency of mature orange orchards in Valencia (Spain). Irrig Drain Syst 3:205–217 | es_ES |
dc.description.references | Chiesi M, Maselli F, Bindi M, Fibbi L, Cherubini P, Arlotta E, Tirone G, Matteucci G, Seufert G (2005) Modelling carbon budget of Mediterranean forests using ground and remote sensing measurements. Agric Forest Meteorol 135(1–4):22–34 | es_ES |
dc.description.references | Ciais P, Wattenbach M, Vuichard N, Smith P, Piao SL, Don A, Luyssaert S, Janssens IA, Bondeau A, Dechow R, Leip A, Smith PC, Beer C, Van Der Werf GR, Gervois S, Van Oost K, Tomelleri E, Freibauer A, Schulze ED, Carboeurope Synthesis T (2010) The European carbon balance. Part 2: croplands. Glob Change Biol 16:1409–1428 | es_ES |
dc.description.references | Consoli S, Papa R (2013) Corrected surface energy balance to measure and model the evapotranspiration of irrigated orange orchards in semi-arid Mediterranean conditions. Irrig Sci 31:1159–1171 | es_ES |
dc.description.references | Consoli S, Facini O, Motisi A, Nardino M, Papa R, Rossi F, Barbagallo S (2013) Carbon balance and energy fluxes of a Mediterranean crop. J Agric Eng XLIV(s2):e6 | es_ES |
dc.description.references | Er-Raki S, Abdelghani C, Guemouria N, Ezzahar J, Khabba S, Boulet G, Hanich L (2009) Citrus orchard evapotranspiration: comparison between eddy covariance measurements and the FAO-56 approach estimates. Plant Biosyst 143(1):201–208 | es_ES |
dc.description.references | Falge E, Baldocchi DD, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grünwald T, Hollinger D, Jensen N-O, Katul G, Keronen P, Kowalski A, Ta Lai C, Law BE, Meyers T, Moncrieff J, Moors E, Munger JW, Pilegaar K, Rannik Ü, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001) Gap filling strategies for defensible annual sums of net ecosystem exchange long term energy flux data sets. Agric Forest Meteorol 107:43–69 | es_ES |
dc.description.references | Falge et al (2002) Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agric Forest Meteorol 113(1–4):53–74 | es_ES |
dc.description.references | FAOSTAT (2013) FAOSTAT online database at http://faostat3.fao.org/browse/Q/*/E . Accessed 16 Aug 2016 | es_ES |
dc.description.references | Farahani SHJ, Howell TA, Shuttleworth WJ, Bausch WC (2007) Evapotranspiration: progress in measurement and modeling in agriculture. Trans ASABE 50(5):1627–1638 | es_ES |
dc.description.references | Faurès JM, Bartley D, Bazza M, Burke J, Hoogeveen J, Soto D, Steduto P (2013) Climate smart agriculture sourcebook. FAO, Rome, p 557 | es_ES |
dc.description.references | Foken T (2008) Micrometeorology. Springer, Berlin, Heidelberg, p 308 | es_ES |
dc.description.references | Gash JHC (1986) A note on estimating the effect of limited fetch on micrometeorological evaporation measurements. Bound Layer Meteorol 35:409–413 | es_ES |
dc.description.references | INE (2015) INE online database at http://www.ine.es/dyngs/INEbase/es/ . Accessed 16 Aug 2016 | es_ES |
dc.description.references | Kimball BA, Jackson RD (1975) Soil-heat flux determination: a null-alignment method. Agric Meteorol 15:1–9 | es_ES |
dc.description.references | Lee X, Massman W, Law B (2004) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Atmospheric and oceanographic sciences library, 29th edn. Kluwer Academic Publishers, Netherlands, p 250 | es_ES |
dc.description.references | Li S, Kang S, Li F, Zhang L (2008) Evapotranspiration and crop coefficient of spring maize with plastic mulch using eddy covariance in northwest China. Agric Water Manage 95:1214–1222 | es_ES |
dc.description.references | Maestre-Valero JF, Ragab R, Martínez-Alvarez V, Baille A (2012) Estimation of dew yield from radiative condensers by means of an energy balance model. J Hydrol 460–461:103–109 | es_ES |
dc.description.references | Mariscal MJ, Orgaz F, Villalobos FJ (2000) Modelling and measurement of radiation interception by olive canopies. Agric For Meteorol 100:183–197 | es_ES |
dc.description.references | Martinez-Cob A, Faci JM (2010) Evapotranspiration of an hedge-pruned olive orchard in a semiarid area of NE Spain. Agric Water Manage 97:410–418 | es_ES |
dc.description.references | Martin-Gorriz B, Egea G, Nortes PA, Baille A, González-Real MM, Ruiz-Salleres I, Verhoef A (2011) Effects of high temperature and vapour pressure deficit on net ecosystem exchange and energy balance of an irrigated orange orchard in a semi-arid climate (Southern Spain). Acta Hortic 922:149–156 | es_ES |
dc.description.references | Moore CJ (1986) Frequency-response corrections for eddy-correlation systems. Bound-Lay Meteorol 37(1–2):17–35 | es_ES |
dc.description.references | Nardino M, Pernice F, Rossi F, Georgiadis T, Facini O, Motisi A, Drago A (2013) Annual and monthly carbon balance in an intensively managed Mediterranean olive orchard. Photosynthetica 51(1):63–74 | es_ES |
dc.description.references | Ocheltree TW, Nippert JB, Prasad PVV (2013) Stomatal responses to changes in vapor pressure deficit reflect tissue-specific differences in hydraulic conductance. Plant Cell Environ 37:132–139 | es_ES |
dc.description.references | Paço TA, Ferreira MI, Conceição N (2006) Peach orchard evapotranspiration in a sandy soil: comparison between eddy covariance measurements and estimates by the FAO 56 approach. Agric Water Manage 85(3):303–313 | es_ES |
dc.description.references | Parent AC, Anctil FO (2012) Quantifying evapotranspiration of a rainfed potato crop in South-eastern Canada using eddy covariance techniques. Agric Water Manage 113:45–56 | es_ES |
dc.description.references | Payero JO, Irmak S (2013) Daily energy fluxes, evapotranspiration and crop coefficient of soybean. Agric Water Manage 129:31–43 | es_ES |
dc.description.references | Rana G, Katerji N (1996) Evapotranspiration measurement for tall plant canopies: the sweet sorghum case. Theor Appl Climatol 54(3–4):187–200 | es_ES |
dc.description.references | Rana G, Katerji N (2000) Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: a review. Eur J Agron 13:125–153 | es_ES |
dc.description.references | Rana G, Katerji N, De Lorenzi F (2005) Measurement and modelling of evapotranspiration of irrigated citrus orchard under Mediterranean conditions. Agric Forest Meteorol 128(3–4):199–209 | es_ES |
dc.description.references | Reichstein M, Tenhunen JD, Roupsard O, Ourcival JM, Rambal S, Dore S, Valentini R (2002a) Ecosystem respiration in two Mediterranean evergreen Holm Oak forests: drought effects and decomposition dynamics. Funct Ecol 16(1):27–39 | es_ES |
dc.description.references | Reichstein M, Tenhunen JD, Roupsard O, Ourcival JM, Rambal S, Miglietta F, Peressotti A, Pecchiari M, Tirone G, Valentini R (2002b) Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites: revision of current hypotheses? Global Change Biol 8(10):999–1017 | es_ES |
dc.description.references | Roccuzzo G, Villalobos FJ, Testi L, Fereres E (2014) Effects of water deficits on whole tree water use efficiency of orange. Agric Water Manage 140:61–68 | es_ES |
dc.description.references | Rosa R, Tanny F (2015) Surface renewal and eddy covariance measurements of sensible and latent heat fluxes of cotton during two growing seasons. Biosyst Eng 136:149–161 | es_ES |
dc.description.references | Schuepp PH, Leclerc MY, Macpherson JI, Desjardins RL (1990) Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Bound Layer Meteorol 50:355–373 | es_ES |
dc.description.references | Snyder RL, O’Connell NV (2007) Crop coefficients for microsprinkler-irrigated clean-cultivated, mature citrus in an arid climate. J Irri Drain Eng 133:43–52 | es_ES |
dc.description.references | Testi L, Villalobos FJ, Orgaz F (2004) Evapotranspiration of a young irrigated olive orchard in southern Spain. Agric For Meteorol 121:1–18 | es_ES |
dc.description.references | Testi L, Villalobos F, Orgaz F, Fereres E (2006) Water requirements of olive orchards: I simulation of daily evapotranspiration for scenario analysis. Irrig Sci 24:69–76 | es_ES |
dc.description.references | Testi L, Orgaz F, Villalobos F (2008) Carbon exchange and water use efficiency of a growing, irrigated olive orchard. Environ Exp Bot 63(1–3):168–177 | es_ES |
dc.description.references | Twine TE, Frustas WP, Norman JM, Cook DR, Houser PR, Meyers TP, Prueger JH, Starks PJ, Wesely ML (2000) Correcting eddy-covariance flux underestimates over grassland. Agric Forest Meteorol 103:279–300 | es_ES |
dc.description.references | Uddin J, Hancock NH, Smith RJ, Foley JP (2013) Measurement of evapotranspiration during sprinkler irrigation using a precision energy budget (Bowen ratio, eddy covariance) methodology. Agric Water Manage 116:89–100 | es_ES |
dc.description.references | Ünlü M, Kanber R, Koç DL, Özekici B, Kekeç U, Yeşiloğlu T, Ortaş I, Ünlü F, Kapur B, Tekin S, Käthner J, Gebbers R, Zude M, Peeters A, Ben-Gal A (2014) Irrigation scheduling of grapefruit trees in a Mediterranean environment throughout evaluation of plant water status and evapotranspiration. Turk J Agric For 38:908–915 | es_ES |
dc.description.references | USDA (1993) Irrigation water requirements. In: National engineering handbook, part 623 ed.; United States Department of Agriculture Soil Conservation Service (USDA): Washington DC, USA | es_ES |
dc.description.references | Valentini R, Scarascia-Mugnozza G, Deangelis P, Bimbi R (1991) An experimental test of the eddy-correlation technique over a Mediterranean Macchia canopy. Plant Cell Environ 14(9):987–994 | es_ES |
dc.description.references | Valentini R et al (2000) Respiration as the main determinant of carbon balance in European forests. Nature 404(6780):861–865 | es_ES |
dc.description.references | Van Bavel CHM, Newman JE, Hilgeman RH (1967) Climate and estimated water use by an orange orchard. Agric Meteorol 4(1):27–37 | es_ES |
dc.description.references | Villalobos FJ, Testi L, Moreno-Perez MF (2009) Evaporation and canopy conductance of citrus orchards. Agric Water Manage 96:565–573 | es_ES |
dc.description.references | Villalobos FJ, Testi L, Orgaz F, García-Tejera O, Lopez-Bernal A, González-Dugo MV, Ballester-Lurbe C, Castel JR, Alarcón-Cabañero JJ, Nicolás-Nicolás E, Girona J, Marsal J, Fereres E (2013) Modelling canopy conductance and transpiration of fruit trees in Mediterranean areas: a simplified approach. Agric For Meteorol 171–172:93–103 | es_ES |
dc.description.references | Ward PR, Micina SF, Fillery IRP (2012) Application of eddy covariance to determine ecosystem-scale carbon balance and evapotranspiration in an agroforestry system. Agric and Forest Meteorol 152:178–188 | es_ES |
dc.description.references | Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water-vapor transfer. Q J R Meteorol Soc 106(447):85–100 | es_ES |
dc.description.references | Wilson KB, Goldstein AH, Falge E, Aubinet M, Baldocchi DD, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law BE, Kowalski A, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S (2002) Energy balance closure at FLUXNET sites. Agric Forest Meteorol 113:223–243 | es_ES |
dc.description.references | Wilson KB, Baldocchi D, Falge E, Aubinet M, Berbigier P, Bernhofer C, Dolman H, Field C, Goldstein A, Granier A, Hollinger D, Katul G, Law BE, Meyers T, Moncrieff J, Monson R, Tenhunen J, Valentini R, Verma S, Wofsy S (2003) Diurnal centroid of ecosystem energy and carbon fluxes at FLUXNET sites. J Geophys Res 108(D21):4664 | es_ES |
dc.description.references | Yang F, Zhang Q, Wang R, Zhou J (2014) Evapotranspiration measurement and crop coefficient estimation over a spring wheat farmland ecosystem in the loess plateau. PLoS One 9(6):e100031. doi: 10.1371/journal.pone.0100031 | es_ES |