- -

Evapotranspiration and carbon exchange in a citrus orchard using eddy covariance

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evapotranspiration and carbon exchange in a citrus orchard using eddy covariance

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Maestre-Valero, J. F. es_ES
dc.contributor.author Testi, L. es_ES
dc.contributor.author Jiménez Bello, Miguel Angel es_ES
dc.contributor.author Castel-Sánchez, Juan Ramón es_ES
dc.contributor.author Intrigliolo, D. S. es_ES
dc.date.accessioned 2020-04-17T12:51:38Z
dc.date.available 2020-04-17T12:51:38Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0342-7188 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140956
dc.description.abstract [EN] Evapotranspiration (ET) is an important component of the surface energy and hydrological balance and the main consumptive agriculture water use. Commonly used methodologies to estimate ET require validation with field data to provide accurate results. In addition, the evaluation of the net ecosystem exchange rate (F-NEE) has gained interest in recent times. There is still very little information available about carbon fluxes in citrus orchards. In this study, the eddy covariance (EC) technique was used to determine the actual evapotranspiration (ETe-ec) and the F (NEE) during three irrigated seasons over a flat citrus orchard. Actual seasonal crop coefficients (Kc-ec) were derived by ETe-ec/reference ET. Average ETe-ec for the whole experiment was 1.74 mm/day. Kc-ec showed great variation throughout the year (from 0.40 to 1.20) which was mainly associated with rainfall events. A pronounced variability within both the same season and between seasons was also observed for F-NEE. Based on 2009 data, the only year with a complete database, the citrus orchard acted as a sink for CO2, fixing 3855 kg CO2/ha/year. The results complement previous studies in large lysimeters and provide quantitative information for conducting carbon balance in citrus orchards under Mediterranean conditions. es_ES
dc.description.sponsorship This research was supported by funds from projects Rideco-Consolider CDS2006-0067 and LIFE14 CCM/GR/000635-LIFE CLIMATREE. The authors would like to thank the EU and MINECO for funding, in the frame of the collaborative international consortium IRIDA financed under the ERA-NET Cofund Water-Works2014 Call. This ERA-NET is an integral part of the 2015 Joint Activities developed by the Water Challenges for a Changing World Joint Programme Initiative (Water JPI). Thanks are also due to Mr. F. Sanz (CEBAS-CSIC) for his help with the field work. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Irrigation Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Evapotranspiration and carbon exchange in a citrus orchard using eddy covariance es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00271-017-0548-6 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2006-00067/ES/Programa integral de ahorro y mejora en la productividad del agua de riego en la horticultura española/ Ministerio de Educación y Ciencia/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC//LIFE14 CCM%2FGR%2F000635/EU/A novel approach for accounting & monitoring carbon sequestration of tree crops and their potential as carbon sink areas/LIFE CLIMATREE/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Maestre-Valero, JF.; Testi, L.; Jiménez Bello, MA.; Castel-Sánchez, JR.; Intrigliolo, DS. (2017). Evapotranspiration and carbon exchange in a citrus orchard using eddy covariance. Irrigation Science. 35(5):397-408. https://doi.org/10.1007/s00271-017-0548-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00271-017-0548-6 es_ES
dc.description.upvformatpinicio 397 es_ES
dc.description.upvformatpfin 408 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 35 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\342933 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.description.references Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper no 56. FAO. Roma (Italia), p 300 es_ES
dc.description.references Allen RG, Pereira LS, Howell TA, Jensen ME (2011) Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric Water Manage 98:899–920 es_ES
dc.description.references Baldocchi DD (1997) Measuring and modelling carbon dioxide and water vapour exchange over a temperate broad-leaved forest during the 1995 summer drought. Plant Cell Environ 20:1108–1122 es_ES
dc.description.references Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biol 9:479–492 es_ES
dc.description.references Ballester C, Jiménez-Bello MA, Castel JR, Intrigliolo DS (2013) Usefulness of thermography for plant water stress detection in citrus and persimmon trees. Agric Forest Meteorol 168:120–129 es_ES
dc.description.references Balogh J, Fóti S, Pintér K, Burri S, Eugster W, Papp M, Nagy Z (2015) Soil CO2 efflux and production rates as influenced by evapotranspiration in a dry grassland. Plant Soil 388:157–173 es_ES
dc.description.references Cammalleri C, Ciraolo G, Minacapilli M, Rallo G (2013) Evapotranspiration from an olive orchard using remote sensing-based dual crop coefficient approach. Water Resour Manage 27:4877–4895 es_ES
dc.description.references Castel JR, Bautista I, Ramos C, Cruz G (1987) Evapotranspiration and irrigation efficiency of mature orange orchards in Valencia (Spain). Irrig Drain Syst 3:205–217 es_ES
dc.description.references Chiesi M, Maselli F, Bindi M, Fibbi L, Cherubini P, Arlotta E, Tirone G, Matteucci G, Seufert G (2005) Modelling carbon budget of Mediterranean forests using ground and remote sensing measurements. Agric Forest Meteorol 135(1–4):22–34 es_ES
dc.description.references Ciais P, Wattenbach M, Vuichard N, Smith P, Piao SL, Don A, Luyssaert S, Janssens IA, Bondeau A, Dechow R, Leip A, Smith PC, Beer C, Van Der Werf GR, Gervois S, Van Oost K, Tomelleri E, Freibauer A, Schulze ED, Carboeurope Synthesis T (2010) The European carbon balance. Part 2: croplands. Glob Change Biol 16:1409–1428 es_ES
dc.description.references Consoli S, Papa R (2013) Corrected surface energy balance to measure and model the evapotranspiration of irrigated orange orchards in semi-arid Mediterranean conditions. Irrig Sci 31:1159–1171 es_ES
dc.description.references Consoli S, Facini O, Motisi A, Nardino M, Papa R, Rossi F, Barbagallo S (2013) Carbon balance and energy fluxes of a Mediterranean crop. J Agric Eng XLIV(s2):e6 es_ES
dc.description.references Er-Raki S, Abdelghani C, Guemouria N, Ezzahar J, Khabba S, Boulet G, Hanich L (2009) Citrus orchard evapotranspiration: comparison between eddy covariance measurements and the FAO-56 approach estimates. Plant Biosyst 143(1):201–208 es_ES
dc.description.references Falge E, Baldocchi DD, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grünwald T, Hollinger D, Jensen N-O, Katul G, Keronen P, Kowalski A, Ta Lai C, Law BE, Meyers T, Moncrieff J, Moors E, Munger JW, Pilegaar K, Rannik Ü, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001) Gap filling strategies for defensible annual sums of net ecosystem exchange long term energy flux data sets. Agric Forest Meteorol 107:43–69 es_ES
dc.description.references Falge et al (2002) Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agric Forest Meteorol 113(1–4):53–74 es_ES
dc.description.references FAOSTAT (2013) FAOSTAT online database at http://faostat3.fao.org/browse/Q/*/E . Accessed 16 Aug 2016 es_ES
dc.description.references Farahani SHJ, Howell TA, Shuttleworth WJ, Bausch WC (2007) Evapotranspiration: progress in measurement and modeling in agriculture. Trans ASABE 50(5):1627–1638 es_ES
dc.description.references Faurès JM, Bartley D, Bazza M, Burke J, Hoogeveen J, Soto D, Steduto P (2013) Climate smart agriculture sourcebook. FAO, Rome, p 557 es_ES
dc.description.references Foken T (2008) Micrometeorology. Springer, Berlin, Heidelberg, p 308 es_ES
dc.description.references Gash JHC (1986) A note on estimating the effect of limited fetch on micrometeorological evaporation measurements. Bound Layer Meteorol 35:409–413 es_ES
dc.description.references INE (2015) INE online database at http://www.ine.es/dyngs/INEbase/es/ . Accessed 16 Aug 2016 es_ES
dc.description.references Kimball BA, Jackson RD (1975) Soil-heat flux determination: a null-alignment method. Agric Meteorol 15:1–9 es_ES
dc.description.references Lee X, Massman W, Law B (2004) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Atmospheric and oceanographic sciences library, 29th edn. Kluwer Academic Publishers, Netherlands, p 250 es_ES
dc.description.references Li S, Kang S, Li F, Zhang L (2008) Evapotranspiration and crop coefficient of spring maize with plastic mulch using eddy covariance in northwest China. Agric Water Manage 95:1214–1222 es_ES
dc.description.references Maestre-Valero JF, Ragab R, Martínez-Alvarez V, Baille A (2012) Estimation of dew yield from radiative condensers by means of an energy balance model. J Hydrol 460–461:103–109 es_ES
dc.description.references Mariscal MJ, Orgaz F, Villalobos FJ (2000) Modelling and measurement of radiation interception by olive canopies. Agric For Meteorol 100:183–197 es_ES
dc.description.references Martinez-Cob A, Faci JM (2010) Evapotranspiration of an hedge-pruned olive orchard in a semiarid area of NE Spain. Agric Water Manage 97:410–418 es_ES
dc.description.references Martin-Gorriz B, Egea G, Nortes PA, Baille A, González-Real MM, Ruiz-Salleres I, Verhoef A (2011) Effects of high temperature and vapour pressure deficit on net ecosystem exchange and energy balance of an irrigated orange orchard in a semi-arid climate (Southern Spain). Acta Hortic 922:149–156 es_ES
dc.description.references Moore CJ (1986) Frequency-response corrections for eddy-correlation systems. Bound-Lay Meteorol 37(1–2):17–35 es_ES
dc.description.references Nardino M, Pernice F, Rossi F, Georgiadis T, Facini O, Motisi A, Drago A (2013) Annual and monthly carbon balance in an intensively managed Mediterranean olive orchard. Photosynthetica 51(1):63–74 es_ES
dc.description.references Ocheltree TW, Nippert JB, Prasad PVV (2013) Stomatal responses to changes in vapor pressure deficit reflect tissue-specific differences in hydraulic conductance. Plant Cell Environ 37:132–139 es_ES
dc.description.references Paço TA, Ferreira MI, Conceição N (2006) Peach orchard evapotranspiration in a sandy soil: comparison between eddy covariance measurements and estimates by the FAO 56 approach. Agric Water Manage 85(3):303–313 es_ES
dc.description.references Parent AC, Anctil FO (2012) Quantifying evapotranspiration of a rainfed potato crop in South-eastern Canada using eddy covariance techniques. Agric Water Manage 113:45–56 es_ES
dc.description.references Payero JO, Irmak S (2013) Daily energy fluxes, evapotranspiration and crop coefficient of soybean. Agric Water Manage 129:31–43 es_ES
dc.description.references Rana G, Katerji N (1996) Evapotranspiration measurement for tall plant canopies: the sweet sorghum case. Theor Appl Climatol 54(3–4):187–200 es_ES
dc.description.references Rana G, Katerji N (2000) Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: a review. Eur J Agron 13:125–153 es_ES
dc.description.references Rana G, Katerji N, De Lorenzi F (2005) Measurement and modelling of evapotranspiration of irrigated citrus orchard under Mediterranean conditions. Agric Forest Meteorol 128(3–4):199–209 es_ES
dc.description.references Reichstein M, Tenhunen JD, Roupsard O, Ourcival JM, Rambal S, Dore S, Valentini R (2002a) Ecosystem respiration in two Mediterranean evergreen Holm Oak forests: drought effects and decomposition dynamics. Funct Ecol 16(1):27–39 es_ES
dc.description.references Reichstein M, Tenhunen JD, Roupsard O, Ourcival JM, Rambal S, Miglietta F, Peressotti A, Pecchiari M, Tirone G, Valentini R (2002b) Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites: revision of current hypotheses? Global Change Biol 8(10):999–1017 es_ES
dc.description.references Roccuzzo G, Villalobos FJ, Testi L, Fereres E (2014) Effects of water deficits on whole tree water use efficiency of orange. Agric Water Manage 140:61–68 es_ES
dc.description.references Rosa R, Tanny F (2015) Surface renewal and eddy covariance measurements of sensible and latent heat fluxes of cotton during two growing seasons. Biosyst Eng 136:149–161 es_ES
dc.description.references Schuepp PH, Leclerc MY, Macpherson JI, Desjardins RL (1990) Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Bound Layer Meteorol 50:355–373 es_ES
dc.description.references Snyder RL, O’Connell NV (2007) Crop coefficients for microsprinkler-irrigated clean-cultivated, mature citrus in an arid climate. J Irri Drain Eng 133:43–52 es_ES
dc.description.references Testi L, Villalobos FJ, Orgaz F (2004) Evapotranspiration of a young irrigated olive orchard in southern Spain. Agric For Meteorol 121:1–18 es_ES
dc.description.references Testi L, Villalobos F, Orgaz F, Fereres E (2006) Water requirements of olive orchards: I simulation of daily evapotranspiration for scenario analysis. Irrig Sci 24:69–76 es_ES
dc.description.references Testi L, Orgaz F, Villalobos F (2008) Carbon exchange and water use efficiency of a growing, irrigated olive orchard. Environ Exp Bot 63(1–3):168–177 es_ES
dc.description.references Twine TE, Frustas WP, Norman JM, Cook DR, Houser PR, Meyers TP, Prueger JH, Starks PJ, Wesely ML (2000) Correcting eddy-covariance flux underestimates over grassland. Agric Forest Meteorol 103:279–300 es_ES
dc.description.references Uddin J, Hancock NH, Smith RJ, Foley JP (2013) Measurement of evapotranspiration during sprinkler irrigation using a precision energy budget (Bowen ratio, eddy covariance) methodology. Agric Water Manage 116:89–100 es_ES
dc.description.references Ünlü M, Kanber R, Koç DL, Özekici B, Kekeç U, Yeşiloğlu T, Ortaş I, Ünlü F, Kapur B, Tekin S, Käthner J, Gebbers R, Zude M, Peeters A, Ben-Gal A (2014) Irrigation scheduling of grapefruit trees in a Mediterranean environment throughout evaluation of plant water status and evapotranspiration. Turk J Agric For 38:908–915 es_ES
dc.description.references USDA (1993) Irrigation water requirements. In: National engineering handbook, part 623 ed.; United States Department of Agriculture Soil Conservation Service (USDA): Washington DC, USA es_ES
dc.description.references Valentini R, Scarascia-Mugnozza G, Deangelis P, Bimbi R (1991) An experimental test of the eddy-correlation technique over a Mediterranean Macchia canopy. Plant Cell Environ 14(9):987–994 es_ES
dc.description.references Valentini R et al (2000) Respiration as the main determinant of carbon balance in European forests. Nature 404(6780):861–865 es_ES
dc.description.references Van Bavel CHM, Newman JE, Hilgeman RH (1967) Climate and estimated water use by an orange orchard. Agric Meteorol 4(1):27–37 es_ES
dc.description.references Villalobos FJ, Testi L, Moreno-Perez MF (2009) Evaporation and canopy conductance of citrus orchards. Agric Water Manage 96:565–573 es_ES
dc.description.references Villalobos FJ, Testi L, Orgaz F, García-Tejera O, Lopez-Bernal A, González-Dugo MV, Ballester-Lurbe C, Castel JR, Alarcón-Cabañero JJ, Nicolás-Nicolás E, Girona J, Marsal J, Fereres E (2013) Modelling canopy conductance and transpiration of fruit trees in Mediterranean areas: a simplified approach. Agric For Meteorol 171–172:93–103 es_ES
dc.description.references Ward PR, Micina SF, Fillery IRP (2012) Application of eddy covariance to determine ecosystem-scale carbon balance and evapotranspiration in an agroforestry system. Agric and Forest Meteorol 152:178–188 es_ES
dc.description.references Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water-vapor transfer. Q J R Meteorol Soc 106(447):85–100 es_ES
dc.description.references Wilson KB, Goldstein AH, Falge E, Aubinet M, Baldocchi DD, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law BE, Kowalski A, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S (2002) Energy balance closure at FLUXNET sites. Agric Forest Meteorol 113:223–243 es_ES
dc.description.references Wilson KB, Baldocchi D, Falge E, Aubinet M, Berbigier P, Bernhofer C, Dolman H, Field C, Goldstein A, Granier A, Hollinger D, Katul G, Law BE, Meyers T, Moncrieff J, Monson R, Tenhunen J, Valentini R, Verma S, Wofsy S (2003) Diurnal centroid of ecosystem energy and carbon fluxes at FLUXNET sites. J Geophys Res 108(D21):4664 es_ES
dc.description.references Yang F, Zhang Q, Wang R, Zhou J (2014) Evapotranspiration measurement and crop coefficient estimation over a spring wheat farmland ecosystem in the loess plateau. PLoS One 9(6):e100031. doi: 10.1371/journal.pone.0100031 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem