- -

Structural, elastic and vibrational properties of nanocrystalline lutetium gallium garnet under high pressure

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Structural, elastic and vibrational properties of nanocrystalline lutetium gallium garnet under high pressure

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Monteseguro, V. es_ES
dc.contributor.author Rodriguez-Hernandez, P. es_ES
dc.contributor.author Ortiz, H. M. es_ES
dc.contributor.author Venkatramu, V. es_ES
dc.contributor.author Manjón, F.J. es_ES
dc.contributor.author Jayasankar, C. K. es_ES
dc.contributor.author Lavin, V. es_ES
dc.contributor.author Muñoz, A. es_ES
dc.date.accessioned 2020-04-17T12:52:10Z
dc.date.available 2020-04-17T12:52:10Z
dc.date.issued 2015 es_ES
dc.identifier.issn 1463-9076 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140972
dc.description.abstract [EN] An ab initio study of the structural, elastic and vibrational properties of the lutetium gallium garnet (Lu3Ga5O12) under pressure has been performed in the framework of the density functional theory, up to 95 GPa. Pressure dependence of the elastic constants and the mechanical stability are analyzed, showing that the garnet structure is mechanically unstable above 87 GPa. Lattice-dynamics calculations in bulk at different pressures have been performed and compared with Raman scattering measurements of the nanocrystalline Tm3+-doped Lu3Ga5O12 up to 60 GPa. The theoretical frequencies and pressure coefficients of the Raman active modes for bulk Lu3Ga5O12 are in good agreement with the experimental data measured for the nano-crystals. The contributions of the different atoms to the vibrational modes have been analyzed based on the calculated total and partial phonon density of states. The vibrational modes have been discussed in relation to the internal and external modes of the GaO4 tetrahedron and the GaO6 octahedron. The calculated infrared modes and their pressure dependence are also reported. Our results show that with this nano-garnet size the sample has essentially bulk properties. es_ES
dc.description.sponsorship This work has been supported by Ministerio de Economia y Competitividad of Spain (MINECO) under the National Program of Materials (MAT2013-46649-C4-2/3/4-P) and the Consolider-Ingenio 2010 Program (MALTA CSD2007-00045) and by the EU-FEDER funds. V. Monteseguro, V. Lavin, and V. Venkatramu are also grateful to MINECO from Spain and Department of Science and Technology of India for financial support within the Indo-Spanish Joint Programme of Cooperation in Science and Technology (DST-INT-Spain-P-38-11/PRI-PIBIN-2011-1153). V. Monteseguro wishes to thank MICINN for the FPI grant (BES-2011-044596). F.J. Manjon acknowledges financial support from Generalitat Valenciana through project GVA-ACOMP-2013-012. V. Venkatramu is grateful to DAE-BRNS, Government of India, for the DAE Research Award for Young Scientist (No. 2010/20/34/5/BRNS/2223). es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Physical Chemistry Chemical Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Structural, elastic and vibrational properties of nanocrystalline lutetium gallium garnet under high pressure es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c4cp05903d es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DST-INT-Spain-P-38-11/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//PRI-PIBIN-2011-1153/ES/MATERIALES NANOCRISTALINOS CON IONES DE TIERRAS RARAS CON APLICACIONES EN FOTÓNICA Y SENSORES es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BES-2011-044596/ES/BES-2011-044596/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACOMP%2F2013%2F012/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/BRNS//2010%2F20%2F34%2F5%2FBRNS%2F2223/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00045/ES/MATERIA A ALTA PRESION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2013-46649-C4-2-P/ES/OXIDOS METALICOS ABO3 EN CONDICIONES EXTREMAS/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Monteseguro, V.; Rodriguez-Hernandez, P.; Ortiz, HM.; Venkatramu, V.; Manjón, F.; Jayasankar, CK.; Lavin, V.... (2015). Structural, elastic and vibrational properties of nanocrystalline lutetium gallium garnet under high pressure. Physical Chemistry Chemical Physics. 17(14):9454-9464. https://doi.org/10.1039/c4cp05903d es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c4cp05903d es_ES
dc.description.upvformatpinicio 9454 es_ES
dc.description.upvformatpfin 9464 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 14 es_ES
dc.relation.pasarela S\297716 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Board of Research in Nuclear Sciences, India es_ES
dc.contributor.funder Department of Science and Technology, Ministry of Science and Technology, India es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.description.references León-Luis, S. F., Muñoz-Santiuste, J. E., Lavín, V., & Rodríguez-Mendoza, U. R. (2012). Optical pressure and temperature sensor based on the luminescence properties of Nd^3+ ion in a gadolinium scandium gallium garnet crystal. Optics Express, 20(9), 10393. doi:10.1364/oe.20.010393 es_ES
dc.description.references Venkatramu, V., Giarola, M., Mariotto, G., Enzo, S., Polizzi, S., Jayasankar, C. K., … Speghini, A. (2010). Nanocrystalline lanthanide-doped Lu3Ga5O12garnets: interesting materials for light-emitting devices. Nanotechnology, 21(17), 175703. doi:10.1088/0957-4484/21/17/175703 es_ES
dc.description.references Jaque, D., & Vetrone, F. (2012). Luminescence nanothermometry. Nanoscale, 4(15), 4301. doi:10.1039/c2nr30764b es_ES
dc.description.references Speghini, A., Piccinelli, F., & Bettinelli, M. (2011). Synthesis, characterization and luminescence spectroscopy of oxide nanopowders activated with trivalent lanthanide ions: The garnet family. Optical Materials, 33(3), 247-257. doi:10.1016/j.optmat.2010.10.039 es_ES
dc.description.references T. Tröster , in Handbook on the Physics and Chemistry of Rare Earths, ed. K. A. Gschneidner, Jr., J.-C. G. Bünzli and V. K. Pecharsky, Elsevier Science B.V., 2003, ch. 217, vol. 33, p. 515 es_ES
dc.description.references Karato, S., Wang, Z., Liu, B., & Fujino, K. (1995). Plastic deformation of garnets: systematics and implications for the rheology of the mantle transition zone. Earth and Planetary Science Letters, 130(1-4), 13-30. doi:10.1016/0012-821x(94)00255-w es_ES
dc.description.references Seijo, L., & Barandiarán, Z. (2014). Large splittings of the 4f shell of Ce3+ in garnets. Physical Chemistry Chemical Physics, 16(8), 3830. doi:10.1039/c3cp53549e es_ES
dc.description.references Venkatramu, V., Luis, S. F. L., Lozano-Gorrin, A. D., Jyothi, L., Babu, P., Rodriguez-Mendoza, U. R., … Lavin, V. (2012). Structural and Luminescence Properties of Ho<SUP>3+</SUP>/Yb<SUP>3+</SUP>-Doped Lu3Ga5O12 Nano-Garnets for Phosphor Applications. Journal of Nanoscience and Nanotechnology, 12(6), 4495-4501. doi:10.1166/jnn.2012.6179 es_ES
dc.description.references Papagelis, K., Kanellis, G., Ves, S., & Kourouklis, G. A. (2002). Lattice Dynamical Properties of the Rare Earth Aluminum Garnets (RE3Al5O12). physica status solidi (b), 233(1), 134-150. doi:10.1002/1521-3951(200209)233:1<134::aid-pssb134>3.0.co;2-z es_ES
dc.description.references Papagelis, K., Arvanitidis, J., Ves, S., & Kourouklis, G. A. (2003). Pressure evolution of the phonon modes and force constants of Tb3Al5O12 and Lu3Al5O12. physica status solidi (b), 235(2), 348-353. doi:10.1002/pssb.200301584 es_ES
dc.description.references Monteseguro, V., Rodríguez-Hernández, P., Vilaplana, R., Manjón, F. J., Venkatramu, V., Errandonea, D., … Muñoz, A. (2014). Lattice Dynamics Study of Nanocrystalline Yttrium Gallium Garnet at High Pressure. The Journal of Physical Chemistry C, 118(24), 13177-13185. doi:10.1021/jp501570c es_ES
dc.description.references Monteseguro, V., Rodríguez-Hernández, P., Lavín, V., Manjón, F. J., & Muñoz, A. (2013). Electronic and elastic properties of yttrium gallium garnet under pressure fromab initiostudies. Journal of Applied Physics, 113(18), 183505. doi:10.1063/1.4804133 es_ES
dc.description.references Guo, H., Zhang, M., Han, J., Zhang, H., & Song, N. (2012). First principles study of structural, phonon, optical, elastic and electronic properties of Y3Al5O12. Physica B: Condensed Matter, 407(12), 2262-2266. doi:10.1016/j.physb.2012.03.011 es_ES
dc.description.references Mujica, A., Rubio, A., Muñoz, A., & Needs, R. J. (2003). High-pressure phases of group-IV, III–V, and II–VI compounds. Reviews of Modern Physics, 75(3), 863-912. doi:10.1103/revmodphys.75.863 es_ES
dc.description.references Xu, Y.-N., & Ching, W. Y. (1999). Electronic structure of yttrium aluminum garnet(Y3Al5O12). Physical Review B, 59(16), 10530-10535. doi:10.1103/physrevb.59.10530 es_ES
dc.description.references Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864-B871. doi:10.1103/physrev.136.b864 es_ES
dc.description.references Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953 es_ES
dc.description.references Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758 es_ES
dc.description.references Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406 es_ES
dc.description.references Chetty, N., Muoz, A., & Martin, R. M. (1989). First-principles calculation of the elastic constants of AlAs. Physical Review B, 40(17), 11934-11936. doi:10.1103/physrevb.40.11934 es_ES
dc.description.references Baroni, S., de Gironcoli, S., Dal Corso, A., & Giannozzi, P. (2001). Phonons and related crystal properties from density-functional perturbation theory. Reviews of Modern Physics, 73(2), 515-562. doi:10.1103/revmodphys.73.515 es_ES
dc.description.references Beckstein, O., Klepeis, J. E., Hart, G. L. W., & Pankratov, O. (2001). First-principles elastic constants and electronic structure ofα−Pt2Siand PtSi. Physical Review B, 63(13). doi:10.1103/physrevb.63.134112 es_ES
dc.description.references J. F. Nye , Physical properties of crystals. Their representation by Tensor and Matrices, Oxford University Press, 1957 es_ES
dc.description.references K. Parlinsky , Computer code PHONON. See: http://wolf.ifj.edu.pl/phonon es_ES
dc.description.references Yu, F., Yuan, D., Cheng, X., Duan, X., Wang, X., Kong, L., … Li, Z. (2007). Preparation and characterization of yttrium gallium garnet nanoparticles by citrate sol–gel method at low temperature. Materials Letters, 61(11-12), 2322-2324. doi:10.1016/j.matlet.2006.09.003 es_ES
dc.description.references Venkatramu, V., León-Luis, S. F., Rodríguez-Mendoza, U. R., Monteseguro, V., Manjón, F. J., Lozano-Gorrín, A. D., … Lavín, V. (2012). Synthesis, structure and luminescence of Er3+-doped Y3Ga5O12 nano-garnets. Journal of Materials Chemistry, 22(27), 13788. doi:10.1039/c2jm31386c es_ES
dc.description.references Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. doi:10.1029/jb091ib05p04673 es_ES
dc.description.references Errandonea, D., Meng, Y., Somayazulu, M., & Häusermann, D. (2005). Pressure-induced transition in titanium metal: a systematic study of the effects of uniaxial stress. Physica B: Condensed Matter, 355(1-4), 116-125. doi:10.1016/j.physb.2004.10.030 es_ES
dc.description.references Klotz, S., Chervin, J.-C., Munsch, P., & Le Marchand, G. (2009). Hydrostatic limits of 11 pressure transmitting media. Journal of Physics D: Applied Physics, 42(7), 075413. doi:10.1088/0022-3727/42/7/075413 es_ES
dc.description.references Euler, F., & Bruce, J. A. (1965). Oxygen coordinates of compounds with garnet structure. Acta Crystallographica, 19(6), 971-978. doi:10.1107/s0365110x65004747 es_ES
dc.description.references Birch, F. (1947). Finite Elastic Strain of Cubic Crystals. Physical Review, 71(11), 809-824. doi:10.1103/physrev.71.809 es_ES
dc.description.references V. Milman , R. H.Nobes, E. V.Akhmatskaya, B.Winkler, C. J.Pickard and J. A.White, in Ab Initio Study of the Structure and Compressibility of Garnets, in Properties of Complex Inorganic Solids 2, ed. A. Meike, A. Gonis, P. E. A. Turchi and K. Rajan, Kluwer Academic/Plenum, New York, 2000, p. 417 es_ES
dc.description.references V. Monteseguro , et al., unpublished es_ES
dc.description.references Kaminska, A., Buczko, R., Paszkowicz, W., Przybylińska, H., Werner-Malento, E., Suchocki, A., … Saxena, S. (2011). Merging of the4F3/2level states of Nd3+ions in the photoluminescence spectra of gadolinium-gallium garnets under high pressure. Physical Review B, 84(7). doi:10.1103/physrevb.84.075483 es_ES
dc.description.references M. Born and K.Huang, Dynamical Theory of Crystal Lattices, Oxford University Press, 1954 es_ES
dc.description.references Wang, J., Yip, S., Phillpot, S. R., & Wolf, D. (1993). Crystal instabilities at finite strain. Physical Review Letters, 71(25), 4182-4185. doi:10.1103/physrevlett.71.4182 es_ES
dc.description.references Hua, H., Mirov, S., & Vohra, Y. K. (1996). High-pressure and high-temperature studies on oxide garnets. Physical Review B, 54(9), 6200-6209. doi:10.1103/physrevb.54.6200 es_ES
dc.description.references Pugh, S. F. (1954). XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45(367), 823-843. doi:10.1080/14786440808520496 es_ES
dc.description.references Arvanitidis, J., Papagelis, K., Christofilos, D., Kimura, H., Kourouklis, G. A., & Ves, S. (2004). High pressure Raman study of Y3Al5O12. physica status solidi (b), 241(14), 3149-3154. doi:10.1002/pssb.200405230 es_ES
dc.description.references Hurrell, J. P., Porto, S. P. S., Chang, I. F., Mitra, S. S., & Bauman, R. P. (1968). Optical Phonons of Yttrium Aluminum Garnet. Physical Review, 173(3), 851-856. doi:10.1103/physrev.173.851 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem