- -

Experimental evidence of rainbow trapping and Bloch oscillations of torsional waves in chirped metallic beams

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Experimental evidence of rainbow trapping and Bloch oscillations of torsional waves in chirped metallic beams

Show simple item record

Files in this item

dc.contributor.author Arreola-Lucas, Arturo es_ES
dc.contributor.author Baez, Gabriela es_ES
dc.contributor.author Cervera Moreno, Francisco Salvador es_ES
dc.contributor.author Climente Alarcón, Alfonso es_ES
dc.contributor.author Mendez-Sanchez, R.A. es_ES
dc.contributor.author Sánchez-Dehesa Moreno-Cid, José es_ES
dc.date.accessioned 2020-04-22T08:01:04Z
dc.date.available 2020-04-22T08:01:04Z
dc.date.issued 2019 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/141294
dc.description.abstract [EN] The Bloch oscillations (BO) and the rainbow trapping (RT) are two apparently unrelated phenomena, the former arising in solid state physics and the latter in metamaterials. A Bloch oscillation, on the one hand, is a counter-intuitive effect in which electrons start to oscillate in a crystalline structure when a static electric field is applied. This effect has been observed not only in solid state physics but also in optical and acoustical structured systems since a static electric field can be mimicked by a chirped structure. The RT, on the other hand, is a phenomenon in which the speed of a wave packet is slowed down in a dielectric structure; different colors then arrive to different depths within the structure thus separating the colors also in time. Here we show experimentally the emergence of both phenomena studying the propagation of torsional waves in chirped metallic beams. Experiments are performed in three aluminum beams in which different structures were machined: one periodic and two chirped. For the smaller value of the chirping parameter the wave packets, with different central frequencies, are back-scattered at different positions inside the corrugated beam; the packets with higher central frequencies being the ones with larger penetration depths. This behavior represents the mechanical analogue of the rainbow trapping effect. This phenomenon is the precursor of the mechanical Bloch oscillations, which are here demonstrated for a larger value of the chirping parameter. It is observed that the oscillatory behavior observed at small values of the chirp parameter is rectified according to the penetration length of the wave packet. es_ES
dc.description.sponsorship Work partially supported by DGAPA-UNAM under projects PAPIIT IN103115 and IN109318 and by CONACYT project 284096. A.A.L. acknowledges CONACYT for the support granted to pursue his Ph.D. studies. G. Baez received CONACYT's financial support. RAMS received support from DGAPA-UNAM under program PASPA. We thank M. Martinez, A. Martinez, V. Dominguez-Rocha, E. Flores and E. Sadurni for invaluable comments. F.C., A.C. and J.S-D. acknowledge the support by the Ministerio de Economa y Competitividad of the Spanish government, and the European Union FEDER through project TEC2014-53088-C3-1-R. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation UNAM/ PAPIIT IN103115 es_ES
dc.relation UNAM/IN109318 es_ES
dc.relation CONACYT/284096 es_ES
dc.relation MINECO/TEC2014-53088-C3-1-R-AR es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Torsional waves es_ES
dc.subject Metallic beams es_ES
dc.subject Rainbow trapping es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Experimental evidence of rainbow trapping and Bloch oscillations of torsional waves in chirped metallic beams es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-018-37842-7 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Arreola-Lucas, A.; Baez, G.; Cervera Moreno, FS.; Climente Alarcón, A.; Mendez-Sanchez, R.; Sánchez-Dehesa Moreno-Cid, J. (2019). Experimental evidence of rainbow trapping and Bloch oscillations of torsional waves in chirped metallic beams. Scientific Reports. 9:1860-1872. https://doi.org/10.1038/s41598-018-37842-7 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-018-37842-7 es_ES
dc.description.upvformatpinicio 1860 es_ES
dc.description.upvformatpfin 1872 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.relation.pasarela S\378000 es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universidad Nacional Autónoma de México es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.relation.references Ascroft, N. W. & Mermin, N. D. Solid State Physics (Hold, Reinhart & Winston, 1972). es_ES
dc.relation.references Kadic, M., Buckmann, T., Schittny, R. & Wegener, M. Metamaterials beyond electromagnetism. Rep. Prog. Phys. 76, 126501 (2013). es_ES
dc.relation.references Cummer, S. A., Christensen, J. & Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mat. 1, 16001 (2016). es_ES
dc.relation.references Tsakmakidis, K. L., Boarman, A. D. & Hess, O. Trapped rainbow storage of light in metamaterials. Nature 450, 397–401 (2007). es_ES
dc.relation.references Kathryn, H. et al. Designing perturbative metamaterials from discrete models. Nat. Mat. 17, 323–328 (2018). es_ES
dc.relation.references de Lima, M. M. Jr., Kosevich, Y. A., Santos, P. V. & Cantarero, A. Surface acoustic Bloch oscillations and Wannier-Stark ladders and Landau-Zenner tunneling in a solid. Phys. Rev. Lett. 104, 165502, https://doi.org/10.1103/PhysRevLett.104.165502 (2010). es_ES
dc.relation.references Tian, Z. & Yu, L. Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates. Sci. Rep. 7, 40004, https://doi.org/10.1038/srep40004 (2017). es_ES
dc.relation.references Waschke, C. et al. Coherent submillimeter-wave emission from bloch oscillations in a semiconductor superlattice. Phys. Rev. Lett. 70, 3319–3322, https://doi.org/10.1103/PhysRevLett.70.3319 (1993). es_ES
dc.relation.references Sapienza, R. et al. Optical analogue of electronic Bloch oscillations. Phys. Rev. Lett. 91, 263902 (2014). es_ES
dc.relation.references Morandotti, R., Peschel, U., Aitchison, J. S., S., E. H. & Silberberg, Y. Experimental observation of linear and nonlinear optical Bloch oscillations. Phys. Rev. Lett. 83, 4756 (1999). es_ES
dc.relation.references Battestti, R. et al. Bloch oscillations of ultracould atoms: a tool for a metrological determination of h / mRb. Phys. Rev. Lett. 92, 253001, https://doi.org/10.1103/PhysRevLett.92.253001 (2007). es_ES
dc.relation.references Sanchis-Alepuz, H., Kosevich, Y. & Sánchez-Dehesa, J. Acoustic analogue of electronic Bloch oscillations. Phys. Rev. Lett. 98, 134301, https://doi.org/10.1103/PhysRevLett.104.197402 (2007). es_ES
dc.relation.references Lanzilotti-Kimura, N. D. et al. Bloch oscillations of THz acoustic phonons in coupled nanocavity structures. Phys. Rev. Lett. 104, 197402, https://doi.org/10.1103/PhysRevLett.104.197402 (2010). es_ES
dc.relation.references Floß, J., Kamalov, A., Averbukh, I. S. & H., B. P. Observation of Bloch oscillations in molecular rotation. Phys. Rev. Lett. 115, 203002, https://doi.org/10.1103/PhysRevLett.115.203002 (2015). es_ES
dc.relation.references Gan, Q., Ding, Y. J. & Bartoli, F. Trapping and releasing at telecommunication wavelengths. Phys. Rev. Lett. 102, 056801, https://doi.org/10.1103/PhysRevLett.102.056801 (2009). es_ES
dc.relation.references Park, J., Boarman, A. D. & Hess, O. Trapping light in plasmonic waveguides. Opt. Express 18, 598–623, https://doi.org/10.1364/OE.18.000598 (2010). es_ES
dc.relation.references Zhao, D., Li, Y. & Zhu, X. Trapped rainbow effect in visible light left-handed heterostructures. Appl. Phys. Lett. 95, 071111, https://doi.org/10.1063/1.3211867 (2009). es_ES
dc.relation.references Smolyaninova, V. N., Smolyaninov, I. I., Kildishev, A. V. & Shalaev, V. Experimental observation of the trapped rainbow. Appl. Phys. Lett. 96, 211121, https://doi.org/10.1063/1.3442501 (2010). es_ES
dc.relation.references Ni, X. et al. Acoustic rainbow trapping by coiling up space. Sci. Rep. 4, 7038, https://doi.org/10.1038/srep07038 (2014). es_ES
dc.relation.references Zhu, J. et al. Acoustic rainbow trapping. Sci. Rep. 3, 1728, https://doi.org/10.1038/srep01728 (2013). es_ES
dc.relation.references Romero-García, V., Picó, R., Cebrecos, A., Sánchez-Morcillo, V. J. & Staliunas, K. Enhancement of sound in chirped sonic cristals. Appl. Phys. Lett. 102, 091906, https://doi.org/10.1063/1.4793575 (2013). es_ES
dc.relation.references Cebrecos, A. et al. Enhancement of sound by soft reflections in exponentially chirped cristals. AIP Adv. 4, 124402, https://doi.org/10.1063/1.4902508 (2014). es_ES
dc.relation.references Zhao, D., Li, Y. & Zhu, X. Broadband lamb wave trapping in cellular metamaterial plates with multiple local resonances. Sci. Rep. 5, 9376, https://doi.org/10.1038/srep09376 (2015). es_ES
dc.relation.references Gutierrez, L. et al. Wannier-stark ladders in one-dimensional elastic systems. Phys. Rev. Lett. 97, 114301, https://doi.org/10.1103/PhysRevLett.97.114301 (2006). es_ES
dc.relation.references Morales, A., Flores, J., Gutierrez, L. & Méndez-Sánchez, R. A. Compressional and torsional wave amplitudes in rods with periodic structures. J. Acoust. Soc. Am. 112, 1961, https://doi.org/10.1121/1.1509431 (2002). es_ES
dc.relation.references Arreola-Lucas, A. et al. Bloch oscillations in mechanical vibrations. PIERS proceedings. (to appear). es_ES
dc.relation.references Graff, K. F. Wave Motion in Elastic Solids (Dover, 1991). es_ES


This item appears in the following Collection(s)

Show simple item record