- -

Analytical Methodology for the Identification of Critical Zones on the Generation of Solid Waste in Large Urban Areas

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Analytical Methodology for the Identification of Critical Zones on the Generation of Solid Waste in Large Urban Areas

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Solano-Meza, Johanna es_ES
dc.contributor.author Rodrigo-Ilarri, Javier es_ES
dc.contributor.author Romero-Hernandez, Claudia Patricia es_ES
dc.contributor.author Rodrigo-Clavero, María-Elena es_ES
dc.date.accessioned 2020-04-24T07:12:46Z
dc.date.available 2020-04-24T07:12:46Z
dc.date.issued 2020-02-13 es_ES
dc.identifier.issn 1660-4601 es_ES
dc.identifier.uri http://hdl.handle.net/10251/141421
dc.description.abstract [EN] One of the main environmental issues to address in large urban areas is the ever-increasing generation of municipal solid waste (MSW) and the need to manage it properly. Despite significant efforts having been made to implement comprehensive solid waste management systems, current management methods often do not provide sustainable alternatives which ensure the reduction of solid waste generation. This paper presents an analytical methodology that employs a combination of geographic information system techniques (GIS) along with statistical and numerical optimization methods to evaluate solid waste generation in large urban areas. The methodology was successfully applied to evaluate MSW generation in different exclusive service areas (ASES) of the city of Bogotá (Colombia). The results of the analysis on the solid waste generation data in each collection area in terms of its socioeconomic level are presented below. These socioeconomic levels are explained by defining different strata in terms of their purchasing power. The results demonstrate the usefulness of these GIS and numerical optimization techniques as a valuable complementary tool to analyze and design efficient and sustainable solid waste management systems. es_ES
dc.description.sponsorship Thanks are due to the Final Disposal Area of the Special Administrative Unit of Public Services of Bogotá for their support in providing data to perform this research study es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof International Journal of Environmental research and Public Health es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Solid waste es_ES
dc.subject Geographic information systems es_ES
dc.subject Solid waste management es_ES
dc.subject Minimization es_ES
dc.subject Collection es_ES
dc.subject Final disposal es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Analytical Methodology for the Identification of Critical Zones on the Generation of Solid Waste in Large Urban Areas es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ijerph17041196 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Solano-Meza, J.; Rodrigo-Ilarri, J.; Romero-Hernandez, CP.; Rodrigo-Clavero, M. (2020). Analytical Methodology for the Identification of Critical Zones on the Generation of Solid Waste in Large Urban Areas. International Journal of Environmental research and Public Health. 17(4):1-14. https://doi.org/10.3390/ijerph17041196 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ijerph17041196 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 4 es_ES
dc.identifier.pmid 32069919 es_ES
dc.identifier.pmcid PMC7068525 es_ES
dc.relation.pasarela S\402676 es_ES
dc.contributor.funder Unidad Administrativa Especial de Servicios Públicos, Colombia
dc.description.references Vitorino de Souza Melaré, A., Montenegro González, S., Faceli, K., & Casadei, V. (2017). Technologies and decision support systems to aid solid-waste management: a systematic review. Waste Management, 59, 567-584. doi:10.1016/j.wasman.2016.10.045 es_ES
dc.description.references De S. Pereira, T., & Fernandino, G. (2019). Evaluation of solid waste management sustainability of a coastal municipality from northeastern Brazil. Ocean & Coastal Management, 179, 104839. doi:10.1016/j.ocecoaman.2019.104839 es_ES
dc.description.references Colvero, D. A., Ramalho, J., Gomes, A. P. D., Matos, M. A. A. de, & Tarelho, L. A. da C. (2020). Economic analysis of a shared municipal solid waste management facility in a metropolitan region. Waste Management, 102, 823-837. doi:10.1016/j.wasman.2019.11.033 es_ES
dc.description.references Vučijak, B., Kurtagić, S. M., & Silajdžić, I. (2016). Multicriteria decision making in selecting best solid waste management scenario: a municipal case study from Bosnia and Herzegovina. Journal of Cleaner Production, 130, 166-174. doi:10.1016/j.jclepro.2015.11.030 es_ES
dc.description.references Bui, T. D., Tsai, F. M., Tseng, M.-L., & Ali, M. H. (2020). Identifying sustainable solid waste management barriers in practice using the fuzzy Delphi method. Resources, Conservation and Recycling, 154, 104625. doi:10.1016/j.resconrec.2019.104625 es_ES
dc.description.references Singh, A. (2019). Solid waste management through the applications of mathematical models. Resources, Conservation and Recycling, 151, 104503. doi:10.1016/j.resconrec.2019.104503 es_ES
dc.description.references Dehghanifard, E., & Dehghani, M. H. (2018). Evaluation and analysis of municipal solid wastes in Tehran, Iran. MethodsX, 5, 312-321. doi:10.1016/j.mex.2018.04.003 es_ES
dc.description.references Lella, J., Mandla, V. R., & Zhu, X. (2017). Solid waste collection/transport optimization and vegetation land cover estimation using Geographic Information System (GIS): A case study of a proposed smart-city. Sustainable Cities and Society, 35, 336-349. doi:10.1016/j.scs.2017.08.023 es_ES
dc.description.references Zysk, E., Dawidowicz, A., Źróbek, S., & Źróbek, R. (2020). The concept of a geographic information system for the identification of degraded urban areas as a part of the land administration system - A Polish case study. Cities, 96, 102423. doi:10.1016/j.cities.2019.102423 es_ES
dc.description.references Ferronato, N., Preziosi, G., Gorritty Portillo, M. A., Guisbert Lizarazu, E. G., & Torretta, V. (2020). Assessment of municipal solid waste selective collection scenarios with geographic information systems in Bolivia. Waste Management, 102, 919-931. doi:10.1016/j.wasman.2019.12.010 es_ES
dc.description.references Erfani, S. M. H., Danesh, S., Karrabi, S. M., Gheibi, M., & Nemati, S. (2019). Statistical analysis of effective variables on the performance of waste storage service using geographical information system and response surface methodology. Journal of Environmental Management, 235, 453-462. doi:10.1016/j.jenvman.2019.01.061 es_ES
dc.description.references Murray, A. T. (2019). Contemporary optimization application through geographic information systems. Omega, 102176. doi:10.1016/j.omega.2019.102176 es_ES
dc.description.references Ghinea, C., Drăgoi, E. N., Comăniţă, E.-D., Gavrilescu, M., Câmpean, T., Curteanu, S., & Gavrilescu, M. (2016). Forecasting municipal solid waste generation using prognostic tools and regression analysis. Journal of Environmental Management, 182, 80-93. doi:10.1016/j.jenvman.2016.07.026 es_ES
dc.description.references Singh, D., & Satija, A. (2016). Prediction of municipal solid waste generation for optimum planning and management with artificial neural network—case study: Faridabad City in Haryana State (India). International Journal of System Assurance Engineering and Management, 9(1), 91-97. doi:10.1007/s13198-016-0484-5 es_ES
dc.description.references Nguyen-Trong, K., Nguyen-Thi-Ngoc, A., Nguyen-Ngoc, D., & Dinh-Thi-Hai, V. (2017). Optimization of municipal solid waste transportation by integrating GIS analysis, equation-based, and agent-based model. Waste Management, 59, 14-22. doi:10.1016/j.wasman.2016.10.048 es_ES
dc.description.references Malakahmad, A., Bakri, P. M., Mokhtar, M. R. M., & Khalil, N. (2014). Solid Waste Collection Routes Optimization via GIS Techniques in Ipoh City, Malaysia. Procedia Engineering, 77, 20-27. doi:10.1016/j.proeng.2014.07.023 es_ES
dc.description.references Gbanie, S. P., Tengbe, P. B., Momoh, J. S., Medo, J., & Kabba, V. T. S. (2013). Modelling landfill location using Geographic Information Systems (GIS) and Multi-Criteria Decision Analysis (MCDA): Case study Bo, Southern Sierra Leone. Applied Geography, 36, 3-12. doi:10.1016/j.apgeog.2012.06.013 es_ES
dc.description.references Al-Salem, S. M., Al-Nasser, A., & Al-Dhafeeri, A. T. (2018). Multi-variable regression analysis for the solid waste generation in the State of Kuwait. Process Safety and Environmental Protection, 119, 172-180. doi:10.1016/j.psep.2018.07.017 es_ES
dc.description.references Duan, N., Li, D., Wang, P., Ma, W., Wenga, T., Zhong, L., & Chen, G. (2020). Comparative study of municipal solid waste disposal in three Chinese representative cities. Journal of Cleaner Production, 254, 120134. doi:10.1016/j.jclepro.2020.120134 es_ES
dc.description.references Niska, H., & Serkkola, A. (2018). Data analytics approach to create waste generation profiles for waste management and collection. Waste Management, 77, 477-485. doi:10.1016/j.wasman.2018.04.033 es_ES
dc.description.references Solano Meza, J. K., Orjuela Yepes, D., Rodrigo-Ilarri, J., & Cassiraga, E. (2019). Predictive analysis of urban waste generation for the city of Bogotá, Colombia, through the implementation of decision trees-based machine learning, support vector machines and artificial neural networks. Heliyon, 5(11), e02810. doi:10.1016/j.heliyon.2019.e02810 es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem