Mostrar el registro sencillo del ítem
dc.contributor.author | Solano-Meza, Johanna | es_ES |
dc.contributor.author | Rodrigo-Ilarri, Javier | es_ES |
dc.contributor.author | Romero-Hernandez, Claudia Patricia | es_ES |
dc.contributor.author | Rodrigo-Clavero, María-Elena | es_ES |
dc.date.accessioned | 2020-04-24T07:12:46Z | |
dc.date.available | 2020-04-24T07:12:46Z | |
dc.date.issued | 2020-02-13 | es_ES |
dc.identifier.issn | 1660-4601 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/141421 | |
dc.description.abstract | [EN] One of the main environmental issues to address in large urban areas is the ever-increasing generation of municipal solid waste (MSW) and the need to manage it properly. Despite significant efforts having been made to implement comprehensive solid waste management systems, current management methods often do not provide sustainable alternatives which ensure the reduction of solid waste generation. This paper presents an analytical methodology that employs a combination of geographic information system techniques (GIS) along with statistical and numerical optimization methods to evaluate solid waste generation in large urban areas. The methodology was successfully applied to evaluate MSW generation in different exclusive service areas (ASES) of the city of Bogotá (Colombia). The results of the analysis on the solid waste generation data in each collection area in terms of its socioeconomic level are presented below. These socioeconomic levels are explained by defining different strata in terms of their purchasing power. The results demonstrate the usefulness of these GIS and numerical optimization techniques as a valuable complementary tool to analyze and design efficient and sustainable solid waste management systems. | es_ES |
dc.description.sponsorship | Thanks are due to the Final Disposal Area of the Special Administrative Unit of Public Services of Bogotá for their support in providing data to perform this research study | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | International Journal of Environmental research and Public Health | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Solid waste | es_ES |
dc.subject | Geographic information systems | es_ES |
dc.subject | Solid waste management | es_ES |
dc.subject | Minimization | es_ES |
dc.subject | Collection | es_ES |
dc.subject | Final disposal | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | Analytical Methodology for the Identification of Critical Zones on the Generation of Solid Waste in Large Urban Areas | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/ijerph17041196 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Solano-Meza, J.; Rodrigo-Ilarri, J.; Romero-Hernandez, CP.; Rodrigo-Clavero, M. (2020). Analytical Methodology for the Identification of Critical Zones on the Generation of Solid Waste in Large Urban Areas. International Journal of Environmental research and Public Health. 17(4):1-14. https://doi.org/10.3390/ijerph17041196 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/ijerph17041196 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.pmid | 32069919 | es_ES |
dc.identifier.pmcid | PMC7068525 | es_ES |
dc.relation.pasarela | S\402676 | es_ES |
dc.contributor.funder | Unidad Administrativa Especial de Servicios Públicos, Colombia | |
dc.description.references | Vitorino de Souza Melaré, A., Montenegro González, S., Faceli, K., & Casadei, V. (2017). Technologies and decision support systems to aid solid-waste management: a systematic review. Waste Management, 59, 567-584. doi:10.1016/j.wasman.2016.10.045 | es_ES |
dc.description.references | De S. Pereira, T., & Fernandino, G. (2019). Evaluation of solid waste management sustainability of a coastal municipality from northeastern Brazil. Ocean & Coastal Management, 179, 104839. doi:10.1016/j.ocecoaman.2019.104839 | es_ES |
dc.description.references | Colvero, D. A., Ramalho, J., Gomes, A. P. D., Matos, M. A. A. de, & Tarelho, L. A. da C. (2020). Economic analysis of a shared municipal solid waste management facility in a metropolitan region. Waste Management, 102, 823-837. doi:10.1016/j.wasman.2019.11.033 | es_ES |
dc.description.references | Vučijak, B., Kurtagić, S. M., & Silajdžić, I. (2016). Multicriteria decision making in selecting best solid waste management scenario: a municipal case study from Bosnia and Herzegovina. Journal of Cleaner Production, 130, 166-174. doi:10.1016/j.jclepro.2015.11.030 | es_ES |
dc.description.references | Bui, T. D., Tsai, F. M., Tseng, M.-L., & Ali, M. H. (2020). Identifying sustainable solid waste management barriers in practice using the fuzzy Delphi method. Resources, Conservation and Recycling, 154, 104625. doi:10.1016/j.resconrec.2019.104625 | es_ES |
dc.description.references | Singh, A. (2019). Solid waste management through the applications of mathematical models. Resources, Conservation and Recycling, 151, 104503. doi:10.1016/j.resconrec.2019.104503 | es_ES |
dc.description.references | Dehghanifard, E., & Dehghani, M. H. (2018). Evaluation and analysis of municipal solid wastes in Tehran, Iran. MethodsX, 5, 312-321. doi:10.1016/j.mex.2018.04.003 | es_ES |
dc.description.references | Lella, J., Mandla, V. R., & Zhu, X. (2017). Solid waste collection/transport optimization and vegetation land cover estimation using Geographic Information System (GIS): A case study of a proposed smart-city. Sustainable Cities and Society, 35, 336-349. doi:10.1016/j.scs.2017.08.023 | es_ES |
dc.description.references | Zysk, E., Dawidowicz, A., Źróbek, S., & Źróbek, R. (2020). The concept of a geographic information system for the identification of degraded urban areas as a part of the land administration system - A Polish case study. Cities, 96, 102423. doi:10.1016/j.cities.2019.102423 | es_ES |
dc.description.references | Ferronato, N., Preziosi, G., Gorritty Portillo, M. A., Guisbert Lizarazu, E. G., & Torretta, V. (2020). Assessment of municipal solid waste selective collection scenarios with geographic information systems in Bolivia. Waste Management, 102, 919-931. doi:10.1016/j.wasman.2019.12.010 | es_ES |
dc.description.references | Erfani, S. M. H., Danesh, S., Karrabi, S. M., Gheibi, M., & Nemati, S. (2019). Statistical analysis of effective variables on the performance of waste storage service using geographical information system and response surface methodology. Journal of Environmental Management, 235, 453-462. doi:10.1016/j.jenvman.2019.01.061 | es_ES |
dc.description.references | Murray, A. T. (2019). Contemporary optimization application through geographic information systems. Omega, 102176. doi:10.1016/j.omega.2019.102176 | es_ES |
dc.description.references | Ghinea, C., Drăgoi, E. N., Comăniţă, E.-D., Gavrilescu, M., Câmpean, T., Curteanu, S., & Gavrilescu, M. (2016). Forecasting municipal solid waste generation using prognostic tools and regression analysis. Journal of Environmental Management, 182, 80-93. doi:10.1016/j.jenvman.2016.07.026 | es_ES |
dc.description.references | Singh, D., & Satija, A. (2016). Prediction of municipal solid waste generation for optimum planning and management with artificial neural network—case study: Faridabad City in Haryana State (India). International Journal of System Assurance Engineering and Management, 9(1), 91-97. doi:10.1007/s13198-016-0484-5 | es_ES |
dc.description.references | Nguyen-Trong, K., Nguyen-Thi-Ngoc, A., Nguyen-Ngoc, D., & Dinh-Thi-Hai, V. (2017). Optimization of municipal solid waste transportation by integrating GIS analysis, equation-based, and agent-based model. Waste Management, 59, 14-22. doi:10.1016/j.wasman.2016.10.048 | es_ES |
dc.description.references | Malakahmad, A., Bakri, P. M., Mokhtar, M. R. M., & Khalil, N. (2014). Solid Waste Collection Routes Optimization via GIS Techniques in Ipoh City, Malaysia. Procedia Engineering, 77, 20-27. doi:10.1016/j.proeng.2014.07.023 | es_ES |
dc.description.references | Gbanie, S. P., Tengbe, P. B., Momoh, J. S., Medo, J., & Kabba, V. T. S. (2013). Modelling landfill location using Geographic Information Systems (GIS) and Multi-Criteria Decision Analysis (MCDA): Case study Bo, Southern Sierra Leone. Applied Geography, 36, 3-12. doi:10.1016/j.apgeog.2012.06.013 | es_ES |
dc.description.references | Al-Salem, S. M., Al-Nasser, A., & Al-Dhafeeri, A. T. (2018). Multi-variable regression analysis for the solid waste generation in the State of Kuwait. Process Safety and Environmental Protection, 119, 172-180. doi:10.1016/j.psep.2018.07.017 | es_ES |
dc.description.references | Duan, N., Li, D., Wang, P., Ma, W., Wenga, T., Zhong, L., & Chen, G. (2020). Comparative study of municipal solid waste disposal in three Chinese representative cities. Journal of Cleaner Production, 254, 120134. doi:10.1016/j.jclepro.2020.120134 | es_ES |
dc.description.references | Niska, H., & Serkkola, A. (2018). Data analytics approach to create waste generation profiles for waste management and collection. Waste Management, 77, 477-485. doi:10.1016/j.wasman.2018.04.033 | es_ES |
dc.description.references | Solano Meza, J. K., Orjuela Yepes, D., Rodrigo-Ilarri, J., & Cassiraga, E. (2019). Predictive analysis of urban waste generation for the city of Bogotá, Colombia, through the implementation of decision trees-based machine learning, support vector machines and artificial neural networks. Heliyon, 5(11), e02810. doi:10.1016/j.heliyon.2019.e02810 | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |