- -

Symplectic integrators for second-order linear non-autonomous equations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Symplectic integrators for second-order linear non-autonomous equations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bader, Philipp es_ES
dc.contributor.author Blanes Zamora, Sergio es_ES
dc.contributor.author Casas, Fernando es_ES
dc.contributor.author Kopylov, Nikita es_ES
dc.contributor.author Ponsoda Miralles, Enrique es_ES
dc.date.accessioned 2020-04-24T07:13:26Z
dc.date.available 2020-04-24T07:13:26Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0377-0427 es_ES
dc.identifier.uri http://hdl.handle.net/10251/141437
dc.description.abstract [EN] Two families of symplectic methods specially designed for second-order time-dependent linear systems are presented. Both are obtained from the Magnus expansion of the corresponding first-order equation, but otherwise they differ in significant aspects. The first family is addressed to problems with low to moderate dimension, whereas the second is more appropriate when the dimension is large, in particular when the system corresponds to a linear wave equation previously discretised in space. Several numerical experiments illustrate the main features of the new schemes. (C) 2017 Elsevier B.V. All rights reserved. es_ES
dc.description.sponsorship Bader, Blanes, Casas and Kopylov acknowledge the Ministerio de Economia y Competitividad (Spain) for financial support through the coordinated project MTM2013-46553-C3-3-P. Additionally, Kopylov has been partly supported by fellowship GRISOLIA/2015/A/137 from the Generalitat Valenciana. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Computational and Applied Mathematics es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Second-order linear differential equations es_ES
dc.subject Non-autonomous es_ES
dc.subject Symplectic integrators es_ES
dc.subject Magnus expansion es_ES
dc.subject Matrix Hill s equation es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Symplectic integrators for second-order linear non-autonomous equations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cam.2017.03.028 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GRISOLIA%2F2015%2FA%2F137/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2013-46553-C3-3-P/ES/METODOS DE ESCISION Y COMPOSICION EN INTEGRACION NUMERICA GEOMETRICA. TEORIA Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Bader, P.; Blanes Zamora, S.; Casas, F.; Kopylov, N.; Ponsoda Miralles, E. (2018). Symplectic integrators for second-order linear non-autonomous equations. Journal of Computational and Applied Mathematics. 330:909-919. https://doi.org/10.1016/j.cam.2017.03.028 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cam.2017.03.028 es_ES
dc.description.upvformatpinicio 909 es_ES
dc.description.upvformatpfin 919 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 330 es_ES
dc.relation.pasarela S\341428 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem