- -

Multi-Objective Optimization for Urban Drainage or Sewer Networks Rehabilitation through Pipes Substitution and Storage Tanks Installation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multi-Objective Optimization for Urban Drainage or Sewer Networks Rehabilitation through Pipes Substitution and Storage Tanks Installation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ngamalieu-Nengoue, Ulrich Aurele es_ES
dc.contributor.author Martínez-Solano, F. Javier es_ES
dc.contributor.author Iglesias Rey, Pedro Luís es_ES
dc.contributor.author Mora-Meliá, Daniel es_ES
dc.date.accessioned 2020-04-24T07:13:51Z
dc.date.available 2020-04-24T07:13:51Z
dc.date.issued 2019 es_ES
dc.identifier.issn 2073-4441 es_ES
dc.identifier.uri http://hdl.handle.net/10251/141447
dc.description.abstract [EN] Drainage networks are civil constructions which do not generally attract the attention of decision-makers. However, they are of crucial importance for cities; this can be seen when a city faces floods resulting in extensive and expensive damage. The increase of rain intensity due to climate change may cause deficiencies in drainage networks built for certain defined flows which are incapable of coping with sudden increases, leading to floods. This problem can be solved using different strategies; one is the adaptation of the network through rehabilitation. A way to adapt the traditional network approach consists of substituting some pipes for others with greater diameters. More recently, the installation of storm tanks makes it possible to temporarily store excess water. Either of these solutions can be expensive, and an economic analysis must be done. Recent studies have related flooding with damage costs. In this work, a novel solution combining both approaches (pipes and tanks) is studied. A multi-objective optimization algorithm based on the NSGA-II is proposed for the rehabilitation of urban drainage networks through the substitution of pipes and the installation of storage tanks. Installation costs will be o set by damage costs associated with flooding. As a result, a set of optimal solutions that can be implemented based on the objectives to be achieved by municipalities or decisions makers. The methodology is finally applied to a real network located in the city of Bogotá, Colombia. es_ES
dc.description.sponsorship This work was supported by the Program Fondecyt Regular (Project 1180660) of the Comision Nacional de Investigacion Cientifica y Tecnologica (Conicyt), Chile. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Water es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Drainage networks es_ES
dc.subject Flooding es_ES
dc.subject Rehabilitation es_ES
dc.subject Multi-objective optimization es_ES
dc.subject SWMM es_ES
dc.subject.classification MECANICA DE FLUIDOS es_ES
dc.title Multi-Objective Optimization for Urban Drainage or Sewer Networks Rehabilitation through Pipes Substitution and Storage Tanks Installation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/w11050935 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONICYT//1180660/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Ngamalieu-Nengoue, UA.; Martínez-Solano, FJ.; Iglesias Rey, PL.; Mora-Meliá, D. (2019). Multi-Objective Optimization for Urban Drainage or Sewer Networks Rehabilitation through Pipes Substitution and Storage Tanks Installation. Water. 11(5). https://doi.org/10.3390/w11050935 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/w11050935 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\386794 es_ES
dc.contributor.funder Comisión Nacional de Investigación Científica y Tecnológica, Chile es_ES
dc.description.references Kordana, S. (2018). The identification of key factors determining the sustainability of stormwater systems. E3S Web of Conferences, 45, 00033. doi:10.1051/e3sconf/20184500033 es_ES
dc.description.references Yazdi, J., Lee, E. H., & Kim, J. H. (2015). Stochastic Multiobjective Optimization Model for Urban Drainage Network Rehabilitation. Journal of Water Resources Planning and Management, 141(8), 04014091. doi:10.1061/(asce)wr.1943-5452.0000491 es_ES
dc.description.references Starzec, M., Dziopak, J., Słyś, D., Pochwat, K., & Kordana, S. (2018). Dimensioning of Required Volumes of Interconnected Detention Tanks Taking into Account the Direction and Speed of Rain Movement. Water, 10(12), 1826. doi:10.3390/w10121826 es_ES
dc.description.references Mailhot, A., & Duchesne, S. (2010). Design Criteria of Urban Drainage Infrastructures under Climate Change. Journal of Water Resources Planning and Management, 136(2), 201-208. doi:10.1061/(asce)wr.1943-5452.0000023 es_ES
dc.description.references Gulizia, C., & Camilloni, I. (2014). Comparative analysis of the ability of a set of CMIP3 and CMIP5 global climate models to represent precipitation in South America. International Journal of Climatology, 35(4), 583-595. doi:10.1002/joc.4005 es_ES
dc.description.references Ma, M., He, B., Wan, J., Jia, P., Guo, X., Gao, L., … Hong, Y. (2018). Characterizing the Flash Flooding Risks from 2011 to 2016 over China. Water, 10(6), 704. doi:10.3390/w10060704 es_ES
dc.description.references Kirshen, P., Caputo, L., Vogel, R. M., Mathisen, P., Rosner, A., & Renaud, T. (2015). Adapting Urban Infrastructure to Climate Change: A Drainage Case Study. Journal of Water Resources Planning and Management, 141(4), 04014064. doi:10.1061/(asce)wr.1943-5452.0000443 es_ES
dc.description.references Moselhi, O., & Shehab-Eldeen, T. (2000). Classification of Defects in Sewer Pipes Using Neural Networks. Journal of Infrastructure Systems, 6(3), 97-104. doi:10.1061/(asce)1076-0342(2000)6:3(97) es_ES
dc.description.references Driessen, P., Hegger, D., Kundzewicz, Z., van Rijswick, H., Crabbé, A., Larrue, C., … Wiering, M. (2018). Governance Strategies for Improving Flood Resilience in the Face of Climate Change. Water, 10(11), 1595. doi:10.3390/w10111595 es_ES
dc.description.references Reyna, S. M., Vanegas, J. A., & Khan, A. H. (1994). Construction Technologies for Sewer Rehabilitation. Journal of Construction Engineering and Management, 120(3), 467-487. doi:10.1061/(asce)0733-9364(1994)120:3(467) es_ES
dc.description.references Abraham, D. M., Wirahadikusumah, R., Short, T. J., & Shahbahrami, S. (1998). Optimization Modeling for Sewer Network Management. Journal of Construction Engineering and Management, 124(5), 402-410. doi:10.1061/(asce)0733-9364(1998)124:5(402) es_ES
dc.description.references Sebti, A., Fuamba, M., & Bennis, S. (2016). Optimization Model for BMP Selection and Placement in a Combined Sewer. Journal of Water Resources Planning and Management, 142(3), 04015068. doi:10.1061/(asce)wr.1943-5452.0000620 es_ES
dc.description.references Zahmatkesh, Z., Burian, S. J., Karamouz, M., Tavakol-Davani, H., & Goharian, E. (2015). Low-Impact Development Practices to Mitigate Climate Change Effects on Urban Stormwater Runoff: Case Study of New York City. Journal of Irrigation and Drainage Engineering, 141(1), 04014043. doi:10.1061/(asce)ir.1943-4774.0000770 es_ES
dc.description.references Mora-Melià, D., López-Aburto, C., Ballesteros-Pérez, P., & Muñoz-Velasco, P. (2018). Viability of Green Roofs as a Flood Mitigation Element in the Central Region of Chile. Sustainability, 10(4), 1130. doi:10.3390/su10041130 es_ES
dc.description.references Ugarelli, R., & Di Federico, V. (2010). Optimal Scheduling of Replacement and Rehabilitation in Wastewater Pipeline Networks. Journal of Water Resources Planning and Management, 136(3), 348-356. doi:10.1061/(asce)wr.1943-5452.0000038 es_ES
dc.description.references Ngamalieu-Nengoue, U., Iglesias-Rey, P., Martínez-Solano, F., Mora-Meliá, D., & Saldarriaga Valderrama, J. (2019). Urban Drainage Network Rehabilitation Considering Storm Tank Installation and Pipe Substitution. Water, 11(3), 515. doi:10.3390/w11030515 es_ES
dc.description.references Lee, E., & Kim, J. (2017). Development of Resilience Index Based on Flooding Damage in Urban Areas. Water, 9(6), 428. doi:10.3390/w9060428 es_ES
dc.description.references Iglesias-Rey, P. L., Martínez-Solano, F. J., Saldarriaga, J. G., & Navarro-Planas, V. R. (2017). Pseudo-genetic Model Optimization for Rehabilitation of Urban Storm-water Drainage Networks. Procedia Engineering, 186, 617-625. doi:10.1016/j.proeng.2017.03.278 es_ES
dc.description.references Fadel, A. W., Marques, G. F., Goldenfum, J. A., Medellín-Azuara, J., & Tilmant, A. (2018). Full Flood Cost: Insights from a Risk Analysis Perspective. Journal of Environmental Engineering, 144(9), 04018071. doi:10.1061/(asce)ee.1943-7870.0001414 es_ES
dc.description.references Duan, H.-F., Li, F., & Yan, H. (2016). Multi-Objective Optimal Design of Detention Tanks in the Urban Stormwater Drainage System: LID Implementation and Analysis. Water Resources Management, 30(13), 4635-4648. doi:10.1007/s11269-016-1444-1 es_ES
dc.description.references Starzec, M. (2018). A critical evaluation of the methods for the determination of required volumes for detention tank. E3S Web of Conferences, 45, 00088. doi:10.1051/e3sconf/20184500088 es_ES
dc.description.references Pochwat, K. B., & Słyś, D. (2018). Application of Artificial Neural Networks in the Dimensioning of Retention Reservoirs. Ecological Chemistry and Engineering S, 25(4), 605-617. doi:10.1515/eces-2018-0040 es_ES
dc.description.references Cunha, M. C., Zeferino, J. A., Simões, N. E., & Saldarriaga, J. G. (2016). Optimal location and sizing of storage units in a drainage system. Environmental Modelling & Software, 83, 155-166. doi:10.1016/j.envsoft.2016.05.015 es_ES
dc.description.references Martino, G. D., De Paola, F., Fontana, N., Marini, G., & Ranucci, A. (2011). Pollution Reduction in Receivers: Storm-Water Tanks. Journal of Urban Planning and Development, 137(1), 29-38. doi:10.1061/(asce)up.1943-5444.0000037 es_ES
dc.description.references Andrés-Doménech, I., Montanari, A., & Marco, J. B. (2012). Efficiency of Storm Detention Tanks for Urban Drainage Systems under Climate Variability. Journal of Water Resources Planning and Management, 138(1), 36-46. doi:10.1061/(asce)wr.1943-5452.0000144 es_ES
dc.description.references Wang, M., Sun, Y., & Sweetapple, C. (2017). Optimization of storage tank locations in an urban stormwater drainage system using a two-stage approach. Journal of Environmental Management, 204, 31-38. doi:10.1016/j.jenvman.2017.08.024 es_ES
dc.description.references Cunha, M. C., Zeferino, J. A., Simões, N. E., Santos, G. L., & Saldarriaga, J. G. (2017). A decision support model for the optimal siting and sizing of storage units in stormwater drainage systems. International Journal of Sustainable Development and Planning, 12(01), 122-132. doi:10.2495/sdp-v12-n1-122-132 es_ES
dc.description.references Dziopak, J. (2018). A wastewater retention canal as a sewage network and accumulation reservoir. E3S Web of Conferences, 45, 00016. doi:10.1051/e3sconf/20184500016 es_ES
dc.description.references Słyś, D. (2018). An innovative retention canal – a case study. E3S Web of Conferences, 45, 00084. doi:10.1051/e3sconf/20184500084 es_ES
dc.description.references Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197. doi:10.1109/4235.996017 es_ES
dc.description.references Martínez-Solano, F., Iglesias-Rey, P., Saldarriaga, J., & Vallejo, D. (2016). Creation of an SWMM Toolkit for Its Application in Urban Drainage Networks Optimization. Water, 8(6), 259. doi:10.3390/w8060259 es_ES
dc.description.references Wang, Q., Zhou, Q., Lei, X., & Savić, D. A. (2018). Comparison of Multiobjective Optimization Methods Applied to Urban Drainage Adaptation Problems. Journal of Water Resources Planning and Management, 144(11), 04018070. doi:10.1061/(asce)wr.1943-5452.0000996 es_ES
dc.description.references Mora-Melia, D., Iglesias-Rey, P. L., Martinez-Solano, F. J., & Ballesteros-Pérez, P. (2015). Efficiency of Evolutionary Algorithms in Water Network Pipe Sizing. Water Resources Management, 29(13), 4817-4831. doi:10.1007/s11269-015-1092-x es_ES
dc.description.references Mora-Melià, D., Martínez-Solano, F. J., Iglesias-Rey, P. L., & Gutiérrez-Bahamondes, J. H. (2017). Population Size Influence on the Efficiency of Evolutionary Algorithms to Design Water Networks. Procedia Engineering, 186, 341-348. doi:10.1016/j.proeng.2017.03.209 es_ES
dc.subject.ods 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem