TURING, A. M. (1950). I.—COMPUTING MACHINERY AND INTELLIGENCE. Mind, LIX(236), 433-460. doi:10.1093/mind/lix.236.433
Sarkar, P. (2000). A brief history of cellular automata. ACM Computing Surveys, 32(1), 80-107. doi:10.1145/349194.349202
Ermentrout, G. B., & Edelstein-Keshet, L. (1993). Cellular Automata Approaches to Biological Modeling. Journal of Theoretical Biology, 160(1), 97-133. doi:10.1006/jtbi.1993.1007
[+]
TURING, A. M. (1950). I.—COMPUTING MACHINERY AND INTELLIGENCE. Mind, LIX(236), 433-460. doi:10.1093/mind/lix.236.433
Sarkar, P. (2000). A brief history of cellular automata. ACM Computing Surveys, 32(1), 80-107. doi:10.1145/349194.349202
Ermentrout, G. B., & Edelstein-Keshet, L. (1993). Cellular Automata Approaches to Biological Modeling. Journal of Theoretical Biology, 160(1), 97-133. doi:10.1006/jtbi.1993.1007
Boccara, N., Roblin, O., & Roger, M. (1994). Automata network predator-prey model with pursuit and evasion. Physical Review E, 50(6), 4531-4541. doi:10.1103/physreve.50.4531
Gerhardt, M., & Schuster, H. (1989). A cellular automaton describing the formation of spatially ordered structures in chemical systems. Physica D: Nonlinear Phenomena, 36(3), 209-221. doi:10.1016/0167-2789(89)90081-x
Zhu, M. F., Lee, S. Y., & Hong, C. P. (2004). Modified cellular automaton model for the prediction of dendritic growth with melt convection. Physical Review E, 69(6). doi:10.1103/physreve.69.061610
KANSAL, A. R., TORQUATO, S., HARSH, G. R., CHIOCCA, E. A., & DEISBOECK, T. S. (2000). Simulated Brain Tumor Growth Dynamics Using a Three-Dimensional Cellular Automaton. Journal of Theoretical Biology, 203(4), 367-382. doi:10.1006/jtbi.2000.2000
Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79(8), 2554-2558. doi:10.1073/pnas.79.8.2554
TSOUTSOURAS, V., SIRAKOULIS, G. C., PAVLOS, G. P., & ILIOPOULOS, A. C. (2012). SIMULATION OF HEALTHY AND EPILEPTIFORM BRAIN ACTIVITY USING CELLULAR AUTOMATA. International Journal of Bifurcation and Chaos, 22(09), 1250229. doi:10.1142/s021812741250229x
Acedo, L., Lamprianidou, E., Moraño, J.-A., Villanueva-Oller, J., & Villanueva, R.-J. (2015). Firing patterns in a random network cellular automata model of the brain. Physica A: Statistical Mechanics and its Applications, 435, 111-119. doi:10.1016/j.physa.2015.05.017
Chialvo, D. R. (2010). Emergent complex neural dynamics. Nature Physics, 6(10), 744-750. doi:10.1038/nphys1803
Priesemann, V. (2014). Spike avalanches in vivo suggest a driven, slightly subcritical brain state. Frontiers in Systems Neuroscience, 8. doi:10.3389/fnsys.2014.00108
Langton, C. G. (1990). Computation at the edge of chaos: Phase transitions and emergent computation. Physica D: Nonlinear Phenomena, 42(1-3), 12-37. doi:10.1016/0167-2789(90)90064-v
Friedman, N., Ito, S., Brinkman, B. A. W., Shimono, M., DeVille, R. E. L., Dahmen, K. A., … Butler, T. C. (2012). Universal Critical Dynamics in High Resolution Neuronal Avalanche Data. Physical Review Letters, 108(20). doi:10.1103/physrevlett.108.208102
Kello, C. T. (2013). Critical branching neural networks. Psychological Review, 120(1), 230-254. doi:10.1037/a0030970
Werner, G. (2007). Metastability, criticality and phase transitions in brain and its models. Biosystems, 90(2), 496-508. doi:10.1016/j.biosystems.2006.12.001
Bak, P., Chen, K., & Creutz, M. (1989). Self-organized criticality in the ’Game of Life". Nature, 342(6251), 780-782. doi:10.1038/342780a0
Hemmingsson, J. (1995). Consistent results on ‘Life’. Physica D: Nonlinear Phenomena, 80(1-2), 151-153. doi:10.1016/0167-2789(95)90071-3
Nordfalk, J., & Alstrøm, P. (1996). Phase transitions near the «game of Life». Physical Review E, 54(2), R1025-R1028. doi:10.1103/physreve.54.r1025
Ninagawa, S., Yoneda, M., & Hirose, S. (1998). 1ƒ fluctuation in the «Game of Life». Physica D: Nonlinear Phenomena, 118(1-2), 49-52. doi:10.1016/s0167-2789(98)00025-6
Allegrini, P., Menicucci, D., Bedini, R., Fronzoni, L., Gemignani, A., Grigolini, P., … Paradisi, P. (2009). Spontaneous brain activity as a source of ideal1/fnoise. Physical Review E, 80(6). doi:10.1103/physreve.80.061914
Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 700-711. doi:10.1038/nrn2201
Linkenkaer-Hansen, K., Nikouline, V. V., Palva, J. M., & Ilmoniemi, R. J. (2001). Long-Range Temporal Correlations and Scaling Behavior in Human Brain Oscillations. The Journal of Neuroscience, 21(4), 1370-1377. doi:10.1523/jneurosci.21-04-01370.2001
Gilden, D., Thornton, T., & Mallon, M. (1995). 1/f noise in human cognition. Science, 267(5205), 1837-1839. doi:10.1126/science.7892611
Bédard, C., Kröger, H., & Destexhe, A. (2006). Does the1/fFrequency Scaling of Brain Signals Reflect Self-Organized Critical States? Physical Review Letters, 97(11). doi:10.1103/physrevlett.97.118102
Wolfram, S. (1983). Statistical mechanics of cellular automata. Reviews of Modern Physics, 55(3), 601-644. doi:10.1103/revmodphys.55.601
“Life Universal Computer”http://www.igblan.free-online.co.uk/igblan/ca/
Bagnoli, F., Rechtman, R., & Ruffo, S. (1991). Some facts of life. Physica A: Statistical Mechanics and its Applications, 171(2), 249-264. doi:10.1016/0378-4371(91)90277-j
Garcia, J. B. C., Gomes, M. A. F., Jyh, T. I., Ren, T. I., & Sales, T. R. M. (1993). Nonlinear dynamics of the cellular-automaton ‘‘game of Life’’. Physical Review E, 48(5), 3345-3351. doi:10.1103/physreve.48.3345
Huang, S.-Y., Zou, X.-W., Tan, Z.-J., & Jin, Z.-Z. (2003). Network-induced nonequilibrium phase transition in the «game of Life». Physical Review E, 67(2). doi:10.1103/physreve.67.026107
Blok, H. J., & Bergersen, B. (1999). Synchronous versus asynchronous updating in the «game of Life». Physical Review E, 59(4), 3876-3879. doi:10.1103/physreve.59.3876
Schönfisch, B., & de Roos, A. (1999). Synchronous and asynchronous updating in cellular automata. Biosystems, 51(3), 123-143. doi:10.1016/s0303-2647(99)00025-8
Reia, S. M., & Kinouchi, O. (2014). Conway’s game of life is a near-critical metastable state in the multiverse of cellular automata. Physical Review E, 89(5). doi:10.1103/physreve.89.052123
De la Torre, A. C., & Mártin, H. O. (1997). A survey of cellular automata like the «game of life». Physica A: Statistical Mechanics and its Applications, 240(3-4), 560-570. doi:10.1016/s0378-4371(97)00046-0
Beer, R. D. (2004). Autopoiesis and Cognition in the Game of Life. Artificial Life, 10(3), 309-326. doi:10.1162/1064546041255539
Beer, R. D. (2014). The Cognitive Domain of a Glider in the Game of Life. Artificial Life, 20(2), 183-206. doi:10.1162/artl_a_00125
Yuste, S. B., & Acedo, L. (2000). Number of distinct sites visited byNrandom walkers on a Euclidean lattice. Physical Review E, 61(3), 2340-2347. doi:10.1103/physreve.61.2340
Lachaux, J.-P., Pezard, L., Garnero, L., Pelte, C., Renault, B., Varela, F. J., & Martinerie, J. (1997). Spatial extension of brain activity fools the single-channel reconstruction of EEG dynamics. Human Brain Mapping, 5(1), 26-47. doi:10.1002/(sici)1097-0193(1997)5:1<26::aid-hbm4>3.0.co;2-p
McDowell, J. E., Kissler, J. M., Berg, P., Dyckman, K. A., Gao, Y., Rockstroh, B., & Clementz, B. A. (2005). Electroencephalography/magnetoencephalography study of cortical activities preceding prosaccades and antisaccades. NeuroReport, 16(7), 663-668. doi:10.1097/00001756-200505120-00002
Holsheimer, J., & Feenstra, B. W. . (1977). Volume conduction and EEG measurements within the brain: A quantitative approach to the influence of electrical spread on the linear relationship of activity measured at different locations. Electroencephalography and Clinical Neurophysiology, 43(1), 52-58. doi:10.1016/0013-4694(77)90194-8
Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4), 500-544. doi:10.1113/jphysiol.1952.sp004764
Porooshani, H., Porooshani, A. H., Gannon, L., & Kyle, G. M. (2004). Speed of progression of migrainous visual aura measured by sequential field assessment. Neuro-Ophthalmology, 28(2), 101-105. doi:10.1076/noph.28.2.101.23739
Hutsler, J. J. (2003). The specialized structure of human language cortex: Pyramidal cell size asymmetries within auditory and language-associated regions of the temporal lobes. Brain and Language, 86(2), 226-242. doi:10.1016/s0093-934x(02)00531-x
Wilson, H. R., & Cowan, J. D. (1972). Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons. Biophysical Journal, 12(1), 1-24. doi:10.1016/s0006-3495(72)86068-5
Conway’s Game of Life. Examples of patternshttps://en.wikipedia.org/wiki/Conway%27s_Game_of_Life#Examples_of_patterns
Gardner, M. (1970). Mathematical Games. Scientific American, 223(4), 120-123. doi:10.1038/scientificamerican1070-120
Packard, N. H., & Wolfram, S. (1985). Two-dimensional cellular automata. Journal of Statistical Physics, 38(5-6), 901-946. doi:10.1007/bf01010423
Nunomura, A., Perry, G., Aliev, G., Hirai, K., Takeda, A., Balraj, E. K., … Smith, M. A. (2001). Oxidative Damage Is the Earliest Event in Alzheimer Disease. Journal of Neuropathology & Experimental Neurology, 60(8), 759-767. doi:10.1093/jnen/60.8.759
Kitamura, T., Ogawa, S. K., Roy, D. S., Okuyama, T., Morrissey, M. D., Smith, L. M., … Tonegawa, S. (2017). Engrams and circuits crucial for systems consolidation of a memory. Science, 356(6333), 73-78. doi:10.1126/science.aam6808
Anderson, P. W. (1972). More Is Different. Science, 177(4047), 393-396. doi:10.1126/science.177.4047.393
[-]