- -

Finding the Additives Incorporation Moment in Hybrid Natural Pigments Synthesis to Improve Bioresin Properties

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Finding the Additives Incorporation Moment in Hybrid Natural Pigments Synthesis to Improve Bioresin Properties

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Micó-Vicent, Bárbara es_ES
dc.contributor.author Jordán Núñez, Jorge es_ES
dc.contributor.author Perales Romero, Esther es_ES
dc.contributor.author Martínez-Verdú, Francisco Miguel es_ES
dc.contributor.author Cases, Francisco es_ES
dc.date.accessioned 2020-04-24T07:14:39Z
dc.date.available 2020-04-24T07:14:39Z
dc.date.issued 2019 es_ES
dc.identifier.uri http://hdl.handle.net/10251/141466
dc.description.abstract [EN] Interest in applications of natural dye applications has increased because of their antibacterial properties and the possibility of extracting them from nature and residues. Using nanoclays as hosts to reinforce natural dye properties has been successfully demonstrated. However, no one has attempted to optimize the polymer matrix and hybrid pigment properties at the same time to ensure the best final properties for bio-composite applications. Using a statistical design for experiments, we propose the best combination of modifiers with the best nanoclay as the host of three natural dyes: chlorophyll, ß-carotene, and betanine. Using the L9 Taguchi designs, we learned both the influence of the nanoclay structure, and the addition moment of surfactant, mordant salt, and silane modifiers. FTIR, XRD, DTG, integration sphere spectrophotometer, and UV-aging tests were used to characterize the hybrid pigments and epoxy bioresin composites. The degradation temperatures of the three natural dyes rose and the reinforcement of the stability of three natural dyes to UV¿Vis radiation exposure was demonstrated, which avoided the migration of these dyes from bioresin to wet ribbing. Optimal results were obtained with hydrotalcite clay (calcined or not) by using surfactant and mordant before the natural dye, and before or after silane. View Full-Text es_ES
dc.description.sponsorship This research was funded by Spanish Agencia Estatal de Investigacion (AEI) and the European Union (FEDER funds) (contract MAT2016-77742-C2-1-P) and Spanish Ministry of Economy and Competitiveness (project DPI2015-65814-R). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Coatings es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Hybrid pigments es_ES
dc.subject Natural dyes es_ES
dc.subject Biopolymer es_ES
dc.subject Taguchi es_ES
dc.subject FTIR es_ES
dc.subject Fastness es_ES
dc.subject.classification QUIMICA FISICA es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Finding the Additives Incorporation Moment in Hybrid Natural Pigments Synthesis to Improve Bioresin Properties es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/coatings9010034 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2015-65814-R/ES/REPRODUCCION DIGITAL AVANZADA DE LA GONIOAPARIENCIA VISUAL DE OBJETOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-77742-C2-1-P/ES/DESARROLLO DE MATERIALES POROSOS 2D Y 3D CON APLICACIONES ELECTROQUIMICAS, CATALITICAS, TERMICAS Y BIOMEDICAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera es_ES
dc.description.bibliographicCitation Micó-Vicent, B.; Jordán Núñez, J.; Perales Romero, E.; Martínez-Verdú, FM.; Cases, F. (2019). Finding the Additives Incorporation Moment in Hybrid Natural Pigments Synthesis to Improve Bioresin Properties. Coatings. 9(1):1-17. https://doi.org/10.3390/coatings9010034 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/coatings9010034 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2079-6412 es_ES
dc.relation.pasarela S\375202 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Rather, L. J., Shahid-ul-Islam, Shabbir, M., Bukhari, M. N., Shahid, M., Khan, M. A., & Mohammad, F. (2016). Ecological dyeing of Woolen yarn with Adhatoda vasica natural dye in the presence of biomordants as an alternative copartner to metal mordants. Journal of Environmental Chemical Engineering, 4(3), 3041-3049. doi:10.1016/j.jece.2016.06.019 es_ES
dc.description.references Kilinc, M., Canbolat, S., Merdan, N., Dayioglu, H., & Akin, F. (2015). Investigation of the Color, Fastness and Antimicrobial Properties of Wool Fabrics Dyed with the Natural Dye Extracted from the Cone of Chamaecyparis Lawsoniana. Procedia - Social and Behavioral Sciences, 195, 2152-2159. doi:10.1016/j.sbspro.2015.06.281 es_ES
dc.description.references Chiari, G., Giustetto, R., Druzik, J., Doehne, E., & Ricchiardi, G. (2007). Pre-columbian nanotechnology: reconciling the mysteries of the maya blue pigment. Applied Physics A, 90(1), 3-7. doi:10.1007/s00339-007-4287-z es_ES
dc.description.references Micó-Vicent, B., Martínez-Verdú, F. M., Novikov, A., Stavitskaya, A., Vinokurov, V., Rozhina, E., … Lvov, Y. (2017). Stabilized Dye-Pigment Formulations with Platy and Tubular Nanoclays. Advanced Functional Materials, 28(27), 1703553. doi:10.1002/adfm.201703553 es_ES
dc.description.references Kohno, Y., Inagawa, M., Ikoma, S., Shibata, M., Matsushima, R., Fukuhara, C., … Kobayashi, K. (2011). Stabilization of a hydrophobic natural dye by intercalation into organo-montmorillonite. Applied Clay Science, 54(3-4), 202-205. doi:10.1016/j.clay.2011.09.001 es_ES
dc.description.references Kohno, Y., Asai, S., Shibata, M., Fukuhara, C., Maeda, Y., Tomita, Y., & Kobayashi, K. (2014). Improved photostability of hydrophobic natural dye incorporated in organo-modified hydrotalcite. Journal of Physics and Chemistry of Solids, 75(8), 945-950. doi:10.1016/j.jpcs.2014.04.010 es_ES
dc.description.references Sanchez-Garcia, M. D., Lopez-Rubio, A., & Lagaron, J. M. (2010). Natural micro and nanobiocomposites with enhanced barrier properties and novel functionalities for food biopackaging applications. Trends in Food Science & Technology, 21(11), 528-536. doi:10.1016/j.tifs.2010.07.008 es_ES
dc.description.references Micó-Vicent, B., Jordán, J., Martínez-Verdú, F., & Balart, R. (2016). A combination of three surface modifiers for the optimal generation and application of natural hybrid nanopigments in a biodegradable resin. Journal of Materials Science, 52(2), 889-898. doi:10.1007/s10853-016-0384-8 es_ES
dc.description.references Pérez-Ramírez, J., Abelló, S., & van der Pers, N. M. (2007). Memory Effect of Activated Mg–Al Hydrotalcite: In Situ XRD Studies during Decomposition and Gas-Phase Reconstruction. Chemistry - A European Journal, 13(3), 870-878. doi:10.1002/chem.200600767 es_ES
dc.description.references Sommer, A., Romero, A., Fetter, G., Palomares, E., & Bosch, P. (2013). Exploring and tuning the anchorage of chlorophyllin molecules on anionic clays. Catalysis Today, 212, 186-193. doi:10.1016/j.cattod.2013.03.014 es_ES
dc.description.references Ma, Y., Zhu, J., He, H., Yuan, P., Shen, W., & Liu, D. (2010). Infrared investigation of organo-montmorillonites prepared from different surfactants. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 76(2), 122-129. doi:10.1016/j.saa.2010.02.038 es_ES
dc.description.references Liu, D., Yuan, P., Liu, H., Cai, J., Tan, D., He, H., … Chen, T. (2013). Quantitative characterization of the solid acidity of montmorillonite using combined FTIR and TPD based on the NH3 adsorption system. Applied Clay Science, 80-81, 407-412. doi:10.1016/j.clay.2013.07.006 es_ES
dc.description.references Serratos, I. N., Rojas-González, F., Sosa-Fonseca, R., Esparza-Schulz, J. M., Campos-Peña, V., Tello-Solís, S. R., & García-Sánchez, M. A. (2013). Fluorescence optimization of chlorophyll covalently bonded to mesoporous silica synthesized by the sol–gel method. Journal of Photochemistry and Photobiology A: Chemistry, 272, 28-40. doi:10.1016/j.jphotochem.2013.08.014 es_ES
dc.description.references İnanç Horuz, T., & Belibağlı, K. B. (2018). Nanoencapsulation by electrospinning to improve stability and water solubility of carotenoids extracted from tomato peels. Food Chemistry, 268, 86-93. doi:10.1016/j.foodchem.2018.06.017 es_ES
dc.description.references Selvi, J. A., Rajendran, S., Sri, V. G., Amalraj, A. J., & Narayanasamy, B. (2009). Corrosion Inhibition by Beet Root Extract. Portugaliae Electrochimica Acta, 27(1), 1-11. doi:10.4152/pea.200901001 es_ES
dc.description.references Xie, W., Gao, Z., Pan, W.-P., Hunter, D., Singh, A., & Vaia, R. (2001). Thermal Degradation Chemistry of Alkyl Quaternary Ammonium Montmorillonite. Chemistry of Materials, 13(9), 2979-2990. doi:10.1021/cm010305s es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem