- -

Optimum sample size to estimate mean parasite abundance in fi sh parasite surveys

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimum sample size to estimate mean parasite abundance in fi sh parasite surveys

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Shvydka, S. es_ES
dc.contributor.author Sarabeev, V. es_ES
dc.contributor.author Estruch, V. D. es_ES
dc.contributor.author Cadarso-Suarez, C. es_ES
dc.date.accessioned 2020-04-27T05:55:22Z
dc.date.available 2020-04-27T05:55:22Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0440-6605 es_ES
dc.identifier.uri http://hdl.handle.net/10251/141519
dc.description.abstract [EN] To reach ethically and scientifically valid mean abundance values in parasitological and epidemiological studies this paper considers analytic and simulation approaches for sample size determination. The sample size estimation was carried out by applying mathematical formula with predetermined precision level and parameter of the negative binomial distribution estimated from the empirical data. A simulation approach to optimum sample size determination aimed at the estimation of true value of the mean abundance and its confidence interval (CI) was based on the Bag of Little Bootstraps (BLB). The abundance of two species of monogenean parasites Ligophorus cephali and L. mediterraneus from Mugil cephalus across the Azov-Black Seas localities were subjected to the analysis. The dispersion pattern of both helminth species could be characterized as a highly aggregated distribution with the variance being substantially larger than the mean abundance. The holistic approach applied here offers a wide range of appropriate methods in searching for the optimum sample size and the understanding about the expected precision level of the mean. Given the superior performance of the BLB relative to formulae with its few assumptions, the bootstrap procedure is the preferred method. Two important assessments were performed in the present study: i) based on CIs width a reasonable precision level for the mean abundance in parasitological surveys of Ligophorus spp. could be chosen between 0.8 and 0.5 with 1.6 and 1x mean of the CIs width, and ii) the sample size equal 80 or more host individuals allows accurate and precise estimation of mean abundance. Meanwhile for the host sample size in range between 25 and 40 individuals, the median estimates showed minimal bias but the sampling distribution skewed to the low values; a sample size of 10 host individuals yielded to unreliable estimates. es_ES
dc.description.sponsorship SS and VS were supported by MEDEA project fellowships, Erasmus Mundus Action 2. CC-S was funded by project #MTM2014-52975-C2-1-R:" Inference in Structured Additive Regression (STAR) Models with Extensions to Multivariate Responses. Applications in Biomedicine", cofinanced by the Ministry of Economy and Competitiveness (SPAIN) and by the European Regional Development Fund (FEDER). This study is partially supported by Ministry of Education and Science of Ukraine, project #1/17. es_ES
dc.language Inglés es_ES
dc.publisher De Gruyter Open Sp. z o.o. es_ES
dc.relation.ispartof Helminthologia es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Fish es_ES
dc.subject Ligophorus spp. es_ES
dc.subject Mean abundance es_ES
dc.subject Optimum sample size es_ES
dc.subject Precision es_ES
dc.subject Bag of Little Bootstraps es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Optimum sample size to estimate mean parasite abundance in fi sh parasite surveys es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1515/helm-2017-0054 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2014-52975-C2-1-R/ES/INFERENCIA EN LOS MODELOS DE REGRESION ADITIVOS ESTRUCTURADOS (STAR) CON EXTENSIONES A RESPUESTAS MULTIVARIANTES. APLICACIONES EN BIOMEDICINA./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Shvydka, S.; Sarabeev, V.; Estruch, VD.; Cadarso-Suarez, C. (2018). Optimum sample size to estimate mean parasite abundance in fi sh parasite surveys. Helminthologia. 55(1):52-59. https://doi.org/10.1515/helm-2017-0054 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1515/helm-2017-0054 es_ES
dc.description.upvformatpinicio 52 es_ES
dc.description.upvformatpfin 59 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 55 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\350777 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministry of Education and Science of Ukraine es_ES
dc.description.references Rohde, K., Hayward, C., & Heap, M. (1995). Aspects of the ecology of metazoan ectoparasites of marine fishes. International Journal for Parasitology, 25(8), 945-970. doi:10.1016/0020-7519(95)00015-t es_ES
dc.description.references Anderson, R. M., & Gordon, D. M. (1982). Processes influencing the distribution of parasite numbers within host populations with special emphasis on parasite-induced host mortalities. Parasitology, 85(2), 373-398. doi:10.1017/s0031182000055347 es_ES
dc.description.references Poiani, A. (1992). Ectoparasitism as a possible cost of social life: a comparative analysis using Australian passerines (Passeriformes). Oecologia, 92(3), 429-441. doi:10.1007/bf00317470 es_ES
dc.description.references Kleiner, A., Talwalkar, A., Sarkar, P., & Jordan, M. I. (2014). A scalable bootstrap for massive data. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(4), 795-816. doi:10.1111/rssb.12050 es_ES
dc.description.references Jovani, R., & Tella, J. L. (2006). Parasite prevalence and sample size: misconceptions and solutions. Trends in Parasitology, 22(5), 214-218. doi:10.1016/j.pt.2006.02.011 es_ES
dc.description.references BAGGE, A. M., SASAL, P., VALTONEN, E. T., & KARVONEN, A. (2005). Infracommunity level aggregation in the monogenean communities of crucian carp (Carassius carassius). Parasitology, 131(3), 367-372. doi:10.1017/s0031182005007626 es_ES
dc.description.references Belghyti, D., Berrada-rkhami, O., Boy, V., Aguesse, P., & Gabrion, C. (1994). Population biology of two helminth parasites of flatfishes from the Atlantic coast of Morocco. Journal of Fish Biology, 44(6), 1005-1021. doi:10.1111/j.1095-8649.1994.tb01272.x es_ES
dc.description.references TAYLOR, L. R. (1961). Aggregation, Variance and the Mean. Nature, 189(4766), 732-735. doi:10.1038/189732a0 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem