Mostrar el registro sencillo del ítem
dc.contributor.author | Shvydka, S. | es_ES |
dc.contributor.author | Sarabeev, V. | es_ES |
dc.contributor.author | Estruch, V. D. | es_ES |
dc.contributor.author | Cadarso-Suarez, C. | es_ES |
dc.date.accessioned | 2020-04-27T05:55:22Z | |
dc.date.available | 2020-04-27T05:55:22Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 0440-6605 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/141519 | |
dc.description.abstract | [EN] To reach ethically and scientifically valid mean abundance values in parasitological and epidemiological studies this paper considers analytic and simulation approaches for sample size determination. The sample size estimation was carried out by applying mathematical formula with predetermined precision level and parameter of the negative binomial distribution estimated from the empirical data. A simulation approach to optimum sample size determination aimed at the estimation of true value of the mean abundance and its confidence interval (CI) was based on the Bag of Little Bootstraps (BLB). The abundance of two species of monogenean parasites Ligophorus cephali and L. mediterraneus from Mugil cephalus across the Azov-Black Seas localities were subjected to the analysis. The dispersion pattern of both helminth species could be characterized as a highly aggregated distribution with the variance being substantially larger than the mean abundance. The holistic approach applied here offers a wide range of appropriate methods in searching for the optimum sample size and the understanding about the expected precision level of the mean. Given the superior performance of the BLB relative to formulae with its few assumptions, the bootstrap procedure is the preferred method. Two important assessments were performed in the present study: i) based on CIs width a reasonable precision level for the mean abundance in parasitological surveys of Ligophorus spp. could be chosen between 0.8 and 0.5 with 1.6 and 1x mean of the CIs width, and ii) the sample size equal 80 or more host individuals allows accurate and precise estimation of mean abundance. Meanwhile for the host sample size in range between 25 and 40 individuals, the median estimates showed minimal bias but the sampling distribution skewed to the low values; a sample size of 10 host individuals yielded to unreliable estimates. | es_ES |
dc.description.sponsorship | SS and VS were supported by MEDEA project fellowships, Erasmus Mundus Action 2. CC-S was funded by project #MTM2014-52975-C2-1-R:" Inference in Structured Additive Regression (STAR) Models with Extensions to Multivariate Responses. Applications in Biomedicine", cofinanced by the Ministry of Economy and Competitiveness (SPAIN) and by the European Regional Development Fund (FEDER). This study is partially supported by Ministry of Education and Science of Ukraine, project #1/17. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | De Gruyter Open Sp. z o.o. | es_ES |
dc.relation.ispartof | Helminthologia | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Fish | es_ES |
dc.subject | Ligophorus spp. | es_ES |
dc.subject | Mean abundance | es_ES |
dc.subject | Optimum sample size | es_ES |
dc.subject | Precision | es_ES |
dc.subject | Bag of Little Bootstraps | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Optimum sample size to estimate mean parasite abundance in fi sh parasite surveys | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1515/helm-2017-0054 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2014-52975-C2-1-R/ES/INFERENCIA EN LOS MODELOS DE REGRESION ADITIVOS ESTRUCTURADOS (STAR) CON EXTENSIONES A RESPUESTAS MULTIVARIANTES. APLICACIONES EN BIOMEDICINA./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Shvydka, S.; Sarabeev, V.; Estruch, VD.; Cadarso-Suarez, C. (2018). Optimum sample size to estimate mean parasite abundance in fi sh parasite surveys. Helminthologia. 55(1):52-59. https://doi.org/10.1515/helm-2017-0054 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1515/helm-2017-0054 | es_ES |
dc.description.upvformatpinicio | 52 | es_ES |
dc.description.upvformatpfin | 59 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 55 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\350777 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministry of Education and Science of Ukraine | es_ES |
dc.description.references | Rohde, K., Hayward, C., & Heap, M. (1995). Aspects of the ecology of metazoan ectoparasites of marine fishes. International Journal for Parasitology, 25(8), 945-970. doi:10.1016/0020-7519(95)00015-t | es_ES |
dc.description.references | Anderson, R. M., & Gordon, D. M. (1982). Processes influencing the distribution of parasite numbers within host populations with special emphasis on parasite-induced host mortalities. Parasitology, 85(2), 373-398. doi:10.1017/s0031182000055347 | es_ES |
dc.description.references | Poiani, A. (1992). Ectoparasitism as a possible cost of social life: a comparative analysis using Australian passerines (Passeriformes). Oecologia, 92(3), 429-441. doi:10.1007/bf00317470 | es_ES |
dc.description.references | Kleiner, A., Talwalkar, A., Sarkar, P., & Jordan, M. I. (2014). A scalable bootstrap for massive data. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(4), 795-816. doi:10.1111/rssb.12050 | es_ES |
dc.description.references | Jovani, R., & Tella, J. L. (2006). Parasite prevalence and sample size: misconceptions and solutions. Trends in Parasitology, 22(5), 214-218. doi:10.1016/j.pt.2006.02.011 | es_ES |
dc.description.references | BAGGE, A. M., SASAL, P., VALTONEN, E. T., & KARVONEN, A. (2005). Infracommunity level aggregation in the monogenean communities of crucian carp (Carassius carassius). Parasitology, 131(3), 367-372. doi:10.1017/s0031182005007626 | es_ES |
dc.description.references | Belghyti, D., Berrada-rkhami, O., Boy, V., Aguesse, P., & Gabrion, C. (1994). Population biology of two helminth parasites of flatfishes from the Atlantic coast of Morocco. Journal of Fish Biology, 44(6), 1005-1021. doi:10.1111/j.1095-8649.1994.tb01272.x | es_ES |
dc.description.references | TAYLOR, L. R. (1961). Aggregation, Variance and the Mean. Nature, 189(4766), 732-735. doi:10.1038/189732a0 | es_ES |