Mostrar el registro sencillo del ítem
dc.contributor.author | Zaitov, Adilbek Atakhanovich | es_ES |
dc.date.accessioned | 2020-04-27T08:39:26Z | |
dc.date.available | 2020-04-27T08:39:26Z | |
dc.date.issued | 2020-04-03 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/141545 | |
dc.description.abstract | [EN] In this paper we introduce a metric on the space I(X) of idempotent probability measures on a given compact metric space (X; ρ), which extends the metric ρ. It is proven the introduced metric generates the pointwise convergence topology on I(X). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Applied General Topology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Compact metrizable space | es_ES |
dc.subject | Idempotent measure | es_ES |
dc.subject | Metrization | es_ES |
dc.title | On a metric of the space of idempotent probability measures | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/agt.2020.11865 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Zaitov, AA. (2020). On a metric of the space of idempotent probability measures. Applied General Topology. 21(1):35-51. https://doi.org/10.4995/agt.2020.11865 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2020.11865 | es_ES |
dc.description.upvformatpinicio | 35 | es_ES |
dc.description.upvformatpfin | 51 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1989-4147 | |
dc.relation.pasarela | OJS\11865 | es_ES |
dc.description.references | M. Akian, Densities of idempotent measures and large deviations, Trans. Amer. Math. Soc. 351 (1999), 4515-4543. https://doi.org/10.1090/S0002-9947-99-02153-4 | es_ES |
dc.description.references | G. Choquet,Theory of capacities, Ann. Inst. Fourier 5 (1955), 131-295. https://doi.org/10.5802/aif.53 | es_ES |
dc.description.references | V. V. Fedorchuk, Triples of infinite iterates of metrizable functors, Math. USSR-Izv. 36, no. 2 (1991), 411-433. https://doi.org/10.1070/IM1991v036n02ABEH002028 | es_ES |
dc.description.references | V. V. Fedorchuk and V. V. Filippov, General topology. Basic constructions, Moscow, MSU, 1988. | es_ES |
dc.description.references | E. Hopf, The partial differential equation $u_t +uu_x = mu u_{xx}$, Comm. Pure Appl. Math. 3 (1950), 201-230. https://doi.org/10.1002/cpa.3160030302 | es_ES |
dc.description.references | L. V. Kantorovich and G. Sh. Rubinshtein, On a functional space and certain extremum problems, Dokl. Akad. Nauk SSSR 115, no. 6 (1957), 1058-1061. | es_ES |
dc.description.references | S. C. Kleene, Representation of events in nerve sets and finite automata, in: Automata Studies, J. McCarthy and C. Shannon (eds), Princeton Univ. Press, (1956), 3-40. https://doi.org/10.1515/9781400882618-002 | es_ES |
dc.description.references | V. N. Kolokoltsov and V. P. Maslov, The general form of the endomorphisms in the space of continuous functions with values in a numerical semiring, Sov. Math. Dokl. 36 (1988), 55-59. | es_ES |
dc.description.references | V. N. Kolokoltsov and V. P. Maslov, Idempotent analysis and its applications, Kluwer Publishing House, 1997. https://doi.org/10.1007/978-94-015-8901-7 | es_ES |
dc.description.references | G. L. Litvinov, Maslov dequantization, idempotent and tropical mathematics: A brief introduction, Journal of Mathematical Sciences 140, no. 3 (2007), In this paper we introduce a metric on the space I(X) of idempotent probability measures on a given compact metric space (X; ρ), which extends the metric ρ. It is proven the introduced metric generates the pointwise convergence topology on I(X). 26-444. https://doi.org/10.1007/s10958-007-0450-5 | es_ES |
dc.description.references | G. L. Litvinov, V. P. Maslov and G. B. Shpiz, Idempotent (asymptotic) analysis and the representation theory, in: Asymptotic Combinatorics with Applications to Mathematical Physics, V. A. Malyshev and A. M. Vershik (eds.), Kluwer Academic Publ., Dordrecht (2002), 267-278. https://doi.org/10.1007/978-94-010-0575-3_13 | es_ES |
dc.description.references | L. L. Oridoroga, Layer-by-layer infinite iterations of some metrizable functors, Moscow Univ. Math. Bull. 45, no. 1 (1990), 34-36. | es_ES |
dc.description.references | A. Peczynski, Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions, Dissertationes Math. Rozprawy Mat. 58 (1968), 92 pp. | es_ES |
dc.description.references | A. A. Zaitov, Geometrical and topological properties of a subspace $P_f(X)$ of probability measures, Russ Math. 63, no. 10 (2019), 24-32. https://doi.org/10.3103/S1066369X19100049 | es_ES |
dc.description.references | A. A. Zaitov and A. Ya. Ishmetov, Homotopy properties of the space $I_f(X)$ of idempotent probability measures, Math. Notes 106, no. 3-4 (2019), 562-571. https://doi.org/10.1134/S0001434619090244 | es_ES |
dc.description.references | A. A. Zaitov and Kh. F. Kholturaev, On interrelation of the functors P of probability measures and I of idempotent probability measures, Uzbek Mathematical Journal 4 (2014), 36-45. | es_ES |
dc.description.references | M. M Zarichnyi, Spaces and maps of idempotent measures, Izv. Math. 74, no. 3 (2010), 481-499. https://doi.org/10.1070/IM2010v074n03ABEH002495 | es_ES |