Mostrar el registro sencillo del ítem
dc.contributor.author | Boxer, Laurence | es_ES |
dc.date.accessioned | 2020-04-27T08:39:50Z | |
dc.date.available | 2020-04-27T08:39:50Z | |
dc.date.issued | 2020-04-03 | es_ES |
dc.identifier.issn | 1576-9402 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/141546 | |
dc.description.abstract | [EN] We continue the work of [10], studying properties of digital images determined by fixed point invariants. We introduce pointed versions of invariants that were introduced in [10]. We introduce freezing sets and cold sets to show how the existence of a fixed point set for a continuous self-map restricts the map on the complement of the fixed point set. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Applied General Topology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Digital topology | es_ES |
dc.subject | Digital image | es_ES |
dc.subject | Fixed point | es_ES |
dc.subject | Reducible image | es_ES |
dc.subject | Retract | es_ES |
dc.subject | Wedge | es_ES |
dc.subject | Tree | es_ES |
dc.title | Fixed point sets in digital topology, 2 | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/agt.2020.12101 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Boxer, L. (2020). Fixed point sets in digital topology, 2. Applied General Topology. 21(1):111-133. https://doi.org/10.4995/agt.2020.12101 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2020.12101 | es_ES |
dc.description.upvformatpinicio | 111 | es_ES |
dc.description.upvformatpfin | 133 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1989-4147 | es_ES |
dc.relation.pasarela | OJS\12101 | es_ES |
dc.description.references | C. Berge, Graphs and Hypergraphs, 2nd edition, North-Holland, Amsterdam, 1976. | es_ES |
dc.description.references | L. Boxer, Digitally Continuous functions, Pattern Recognition Letters 15 (1994), 833-839. https://doi.org/10.1016/0167-8655(94)90012-4 | es_ES |
dc.description.references | L. Boxer, A classical construction for the digital fundamental group, Journal of Mathematical Imaging and Vision 10 (1999), 51-62. https://doi.org/10.1023/A:1008370600456 | es_ES |
dc.description.references | L. Boxer, Generalized normal product adjacency in digital topology, Applied General Topology 18, no. 2 (2017), 401-427. https://doi.org/10.4995/agt.2017.7798 | es_ES |
dc.description.references | L. Boxer, Alternate product adjacencies in digital topology, Applied General Topology 19, no. 1 (2018), 21-53. https://doi.org/10.4995/agt.2018.7146 | es_ES |
dc.description.references | L. Boxer, Fixed points and freezing sets in digital topology, Proceedings, Interdisciplinary Colloquium in Topology and its Applications in Vigo, Spain; 55-61. | es_ES |
dc.description.references | L. Boxer, O. Ege, I. Karaca, J. Lopez and J. Louwsma, Digital fixed points, approximate fixed points, and universal functions, Applied General Topology 17, no. 2 (2016), 159-172. https://doi.org/10.4995/agt.2016.4704 | es_ES |
dc.description.references | L. Boxer and I. Karaca, Fundamental groups for digital products, Advances and Applications in Mathematical Sciences 11, no. 4 (2012), 161-180. | es_ES |
dc.description.references | L. Boxer and P. C. Staecker, Fundamental groups and Euler characteristics of sphere-like digital images, Applied General Topology 17, no. 2 (2016), 139-158. https://doi.org/10.4995/agt.2016.4624 | es_ES |
dc.description.references | L. Boxer and P. C. Staecker, Fixed point sets in digital topology, 1, Applied General Topology, to appear. | es_ES |
dc.description.references | G. Chartrand and L. Lesniak, Graphs & Digraphs, 2nd ed., Wadsworth, Inc., Belmont, CA, 1986. | es_ES |
dc.description.references | J. Haarmann, M. P. Murphy, C. S. Peters and P. C. Staecker, Homotopy equivalence in finite digital images, Journal of Mathematical Imaging and Vision 53 (2015), 288-302. https://doi.org/10.1007/s10851-015-0578-8 | es_ES |
dc.description.references | S.-E. Han, Non-product property of the digital fundamental group, Information Sciences 171 (2005), 73-91. https://doi.org/10.1016/j.ins.2004.03.018 | es_ES |
dc.description.references | E. Khalimsky, Motion, deformation, and homotopy in finite spaces, in Proceedings IEEE Intl. Conf. on Systems, Man, and Cybernetics, 1987, 227-234. | es_ES |
dc.description.references | A. Rosenfeld, Digital topology, The American Mathematical Monthly 86, no. 8 (1979), 621-630. https://doi.org/10.1080/00029890.1979.11994873 | es_ES |
dc.description.references | A. Rosenfeld, 'Continuous' functions on digital pictures, Pattern Recognition Letters 4 (1986), 177-184. https://doi.org/10.1016/0167-8655(86)90017-6 | es_ES |