- -

Fixed point sets in digital topology, 2

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fixed point sets in digital topology, 2

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Boxer, Laurence es_ES
dc.date.accessioned 2020-04-27T08:39:50Z
dc.date.available 2020-04-27T08:39:50Z
dc.date.issued 2020-04-03 es_ES
dc.identifier.issn 1576-9402 es_ES
dc.identifier.uri http://hdl.handle.net/10251/141546
dc.description.abstract [EN] We continue the work of [10], studying properties of digital images determined by fixed point invariants. We introduce pointed versions of invariants that were introduced in [10]. We introduce freezing sets and cold sets to show how the existence of a fixed point set for a continuous self-map restricts the map on the complement of the fixed point set. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Digital topology es_ES
dc.subject Digital image es_ES
dc.subject Fixed point es_ES
dc.subject Reducible image es_ES
dc.subject Retract es_ES
dc.subject Wedge es_ES
dc.subject Tree es_ES
dc.title Fixed point sets in digital topology, 2 es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2020.12101 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Boxer, L. (2020). Fixed point sets in digital topology, 2. Applied General Topology. 21(1):111-133. https://doi.org/10.4995/agt.2020.12101 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2020.12101 es_ES
dc.description.upvformatpinicio 111 es_ES
dc.description.upvformatpfin 133 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1989-4147 es_ES
dc.relation.pasarela OJS\12101 es_ES
dc.description.references C. Berge, Graphs and Hypergraphs, 2nd edition, North-Holland, Amsterdam, 1976. es_ES
dc.description.references L. Boxer, Digitally Continuous functions, Pattern Recognition Letters 15 (1994), 833-839. https://doi.org/10.1016/0167-8655(94)90012-4 es_ES
dc.description.references L. Boxer, A classical construction for the digital fundamental group, Journal of Mathematical Imaging and Vision 10 (1999), 51-62. https://doi.org/10.1023/A:1008370600456 es_ES
dc.description.references L. Boxer, Generalized normal product adjacency in digital topology, Applied General Topology 18, no. 2 (2017), 401-427. https://doi.org/10.4995/agt.2017.7798 es_ES
dc.description.references L. Boxer, Alternate product adjacencies in digital topology, Applied General Topology 19, no. 1 (2018), 21-53. https://doi.org/10.4995/agt.2018.7146 es_ES
dc.description.references L. Boxer, Fixed points and freezing sets in digital topology, Proceedings, Interdisciplinary Colloquium in Topology and its Applications in Vigo, Spain; 55-61. es_ES
dc.description.references L. Boxer, O. Ege, I. Karaca, J. Lopez and J. Louwsma, Digital fixed points, approximate fixed points, and universal functions, Applied General Topology 17, no. 2 (2016), 159-172. https://doi.org/10.4995/agt.2016.4704 es_ES
dc.description.references L. Boxer and I. Karaca, Fundamental groups for digital products, Advances and Applications in Mathematical Sciences 11, no. 4 (2012), 161-180. es_ES
dc.description.references L. Boxer and P. C. Staecker, Fundamental groups and Euler characteristics of sphere-like digital images, Applied General Topology 17, no. 2 (2016), 139-158. https://doi.org/10.4995/agt.2016.4624 es_ES
dc.description.references L. Boxer and P. C. Staecker, Fixed point sets in digital topology, 1, Applied General Topology, to appear. es_ES
dc.description.references G. Chartrand and L. Lesniak, Graphs & Digraphs, 2nd ed., Wadsworth, Inc., Belmont, CA, 1986. es_ES
dc.description.references J. Haarmann, M. P. Murphy, C. S. Peters and P. C. Staecker, Homotopy equivalence in finite digital images, Journal of Mathematical Imaging and Vision 53 (2015), 288-302. https://doi.org/10.1007/s10851-015-0578-8 es_ES
dc.description.references S.-E. Han, Non-product property of the digital fundamental group, Information Sciences 171 (2005), 73-91. https://doi.org/10.1016/j.ins.2004.03.018 es_ES
dc.description.references E. Khalimsky, Motion, deformation, and homotopy in finite spaces, in Proceedings IEEE Intl. Conf. on Systems, Man, and Cybernetics, 1987, 227-234. es_ES
dc.description.references A. Rosenfeld, Digital topology, The American Mathematical Monthly 86, no. 8 (1979), 621-630. https://doi.org/10.1080/00029890.1979.11994873 es_ES
dc.description.references A. Rosenfeld, 'Continuous' functions on digital pictures, Pattern Recognition Letters 4 (1986), 177-184. https://doi.org/10.1016/0167-8655(86)90017-6 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem