- -

Dynamic properties of the dynamical system SFnm(X), SFnm(f))

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dynamic properties of the dynamical system SFnm(X), SFnm(f))

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Barragán, Franco es_ES
dc.contributor.author Santiago-Santos, Alicia es_ES
dc.contributor.author Tenorio, Jesús F. es_ES
dc.date.accessioned 2020-04-27T09:01:00Z
dc.date.available 2020-04-27T09:01:00Z
dc.date.issued 2020-04-03
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/141550
dc.description.abstract [EN] Let X be a continuum and let n be a positive integer. We consider the hyperspaces Fn(X) and SFn(X). If m is an integer such that n > m ≥ 1, we consider the quotient space SFnm(X). For a given map f : X → X, we consider the induced maps Fn(f) : Fn(X) → Fn(X), SFn(f) : SFn(X) → SFn(X) and SFnm(f) : SFnm(X) → SFnm(X). In this paper, we introduce the dynamical system (SFnm(X), SFnm (f)) and we investigate some relationships between the dynamical systems (X, f), (Fn(X), Fn(f)), (SFn(X), SFn(f)) and (SFnm(X), SFnm(f)) when these systems are: exact, mixing, weakly mixing, transitive, totally transitive, strongly transitive, chaotic, irreducible, feebly open and turbulent. es_ES
dc.description.sponsorship This paper was partially supported by the project: “Propiedades din´amicas y topol´ogicas sobre sistemas din´amicos inducidos”, (UTMIX-PTC-064) of PRODEP, 2017. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Chaotic es_ES
dc.subject Continuum es_ES
dc.subject Dynamical system es_ES
dc.subject Exact es_ES
dc.subject Feebly open es_ES
dc.subject Hyperspace es_ES
dc.subject Induced map es_ES
dc.subject Irreducible es_ES
dc.subject Mixing es_ES
dc.subject Strongly transitive es_ES
dc.subject Symmetric product es_ES
dc.subject Symmetric product suspension es_ES
dc.subject Totally transitive es_ES
dc.subject Transitive es_ES
dc.subject Turbulent es_ES
dc.subject Weakly mixing es_ES
dc.title Dynamic properties of the dynamical system SFnm(X), SFnm(f)) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2020.11807
dc.relation.projectID info:eu-repo/grantAgreement/SEP//UTMIX-PTC-064/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Barragán, F.; Santiago-Santos, A.; Tenorio, JF. (2020). Dynamic properties of the dynamical system SFnm(X), SFnm(f)). Applied General Topology. 21(1):17-34. https://doi.org/10.4995/agt.2020.11807 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2020.11807 es_ES
dc.description.upvformatpinicio 17 es_ES
dc.description.upvformatpfin 34 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\11807 es_ES
dc.contributor.funder Secretaría de Educación Pública, México es_ES
dc.description.references G. Acosta, A. Illanes and H. Méndez-Lango, The transitivity of induced maps, Topology Appl. 156, no. 5 (2009), 1013-1033. https://doi.org/10.1016/j.topol.2008.12.025 es_ES
dc.description.references E. Akin, The General Topology of Dynamical Systems, Grad. Stud. Math., vol. 1, Amer. Math. Soc., Providence, 1993. es_ES
dc.description.references J. Banks, Chaos for induced hyperspace maps, Chaos Solitons Fractals 25, no. 3 (2005), 681-685. https://doi.org/10.1016/j.chaos.2004.11.089 es_ES
dc.description.references F. Barragán, On the n-fold symmetric product suspensions of a continuum, Topology Appl. 157, no. 3 (2010), 597-604. https://doi.org/10.1016/j.topol.2009.10.017 es_ES
dc.description.references F. Barragán, Induced maps on n-fold symmetric product suspensions, Topology Appl. 158, no. 10 (2011), 1192-1205. https://doi.org/10.1016/j.topol.2011.04.006 es_ES
dc.description.references F. Barragán, Aposyndetic properties of the n-fold symmetric product suspensions of a continuum, Glas. Mat. Ser. III 49(69), no. 1 (2014), 179-193. https://doi.org/10.3336/gm.49.1.13 es_ES
dc.description.references F. Barragán, S. Macías and J. F. Tenorio, More on induced maps on n-fold symmetric product suspensions, Glas. Mat. Ser. III 50(70), no. 2 (2015), 489-512. https://doi.org/10.3336/gm.50.2.15 es_ES
dc.description.references F. Barragán, A. Santiago-Santos and J. F. Tenorio, Dynamic properties for the induced maps on n-fold symmetric product suspensions, Glas. Mat. Ser. III 51(71), no. 2 (2016), 453-474. es_ES
dc.description.references W. Bauer and K. Sigmund, Topological dynamics of transformations induced on the space of probability measures, Monatsh. Math. 79 (1975), 81-92. https://doi.org/10.1007/BF01585664 es_ES
dc.description.references G. D. Birkhoff, Dynamical Systems, American Math. Soc., Colloquium Publication., Vol. IX, Amer. Math. Soc. Providence, R. I., 1927. es_ES
dc.description.references K. Borsuk and S. Ulam, On symmetric products of topological space, Bull. Amer. Math. Soc. 37, no. 12 (1931), 875-882. https://doi.org/10.1090/S0002-9904-1931-05290-3 es_ES
dc.description.references J. Camargo, C. García and A. Ramírez, Transitivity of the Induced Map $C_n(f)$, Rev. Colombiana Mat. 48, no. 2 (2014), 235-245. https://doi.org/10.15446/recolma.v48n2.54131 es_ES
dc.description.references J. S. Cánovas-Peña and G. Soler-López, Topological entropy for induced hyperspace maps, Chaos Solitons Fractals 28, no. 4 (2006), 979-982. https://doi.org/10.1016/j.chaos.2005.08.173 es_ES
dc.description.references E. Castañeda-Alvarado and J. Sánchez-Martínez, On the unicoherence of $F_n(X)$ and $SF^n_m(X)$ of continua, Topology Proc. 42 (2013), 309-326. es_ES
dc.description.references E. Castañeda-Alvarado, F. Orozco-Zitli and J. Sánchez-Martínez, Induced mappings between quotient spaces of symmetric products of continua, Topology Appl. 163 (2014), 66-76. https://doi.org/10.1016/j.topol.2013.10.007 es_ES
dc.description.references J. Dugundji, Topology, Boston, London, Sydney, Toronto: Allyn and Bacon, Inc, 1966. es_ES
dc.description.references L. Fernández and C. Good, Shadowing for induced maps of hyperspaces, Fund. Math. 235, no. 3 (2016), 277-286. https://doi.org/10.4064/fm136-2-2016 es_ES
dc.description.references J. L. Gómez-Rueda, A. Illanes and H. Méndez-Lango, Dynamic properties for the induced maps in the symmetric products, Chaos Solitons Fractals 45, no. 9-10 (2012), 1180-1187. https://doi.org/10.1016/j.chaos.2012.05.003 es_ES
dc.description.references G. Higuera and A. Illanes, Induced mappings on symmetric products, Topolology Proc. 37 (2011), 367-401. es_ES
dc.description.references A. Illanes and S. B. Nadler, Jr., Hyperspaces: fundamentals and recent advances, Monographs and Textbooks in Pure and Applied Math., Vol. 216, Marcel Dekker, New York, Basel, 1999. es_ES
dc.description.references S. Kolyada, L. Snoha and S. Trofimchuk, Noninvertible minimal maps, Fund. Math. 168, no. 2 (2001), 141-163. https://doi.org/10.4064/fm168-2-5 es_ES
dc.description.references D. Kwietniak, Exact Devaney chaos and entropy, Qual. Theory Dyn. Syst. 6, no. 1 (2005), 169-179. https://doi.org/10.1007/BF02972670 es_ES
dc.description.references D. Kwietniak and P. Oprocha, Topological entropy and chaos for maps induced on hyperspaces, Chaos Solitons Fractals 33, no. 1 (2007), 76-86. https://doi.org/10.1016/j.chaos.2005.12.033 es_ES
dc.description.references G. Liao, L. Wang and Y. Zhang, Transitivity, mixing and chaos for a class of set-valued mappings, Sci. China Ser. A 49, no. 1 (2006), 1-8. https://doi.org/10.1007/s11425-004-5234-5 es_ES
dc.description.references X. Ma, B. Hou and G. Liao, Chaos in hyperspace system, Chaos Solitons Fractals 40, no. 2 (2009), 653-660. https://doi.org/10.1016/j.chaos.2007.08.009 es_ES
dc.description.references J. C. Macías, On n-fold pseudo-hyperspace suspensions of continua, Glas. Mat. Ser. III 43(63), no. 2 (2008), 439-449. https://doi.org/10.3336/gm.43.2.14 es_ES
dc.description.references S. Macías, On the n-fold hyperspaces suspension of continua, Topology Appl. 138, no. 1-3 (2004), 125-138. https://doi.org/10.1016/j.topol.2003.08.023 es_ES
dc.description.references S. Macías, Topics on Continua, Pure and Applied Mathematics Series, Vol. 275, Chapman & Hall/CRC, Taylor & Francis Group, Boca Raton, London, New York, Singapore, 2005. es_ES
dc.description.references S. B. Nadler, Jr., A fixed point theorem for hyperspaces suspensions, Houston J. Math. 5, no. 1 (1979), 125-132. es_ES
dc.description.references S. B. Nadler, Jr., Hyperspaces of sets, Monographs and Textbooks in Pure and Applied Math., Vol. 49, Marcel Dekker, New York, Basel, 1978. Reprinted in: Aportaciones Matemáticas de la Sociedad Matemática Mexicana, Serie Textos #33, 2006. es_ES
dc.description.references A. Peris, Set-valued discrete chaos, Chaos Solitons Fractals 26, no. 1 (2005), 19-23. https://doi.org/10.1016/j.chaos.2004.12.039 es_ES
dc.description.references H. Román-Flores, A note on transitivity in set-valued discrete systems, Chaos Solitons Fractals 17, no. 1 (2003), 99-104. https://doi.org/10.1016/S0960-0779(02)00406-X es_ES
dc.description.references M. Sabbaghan and H. Damerchiloo, A note on periodic points and transitive maps, Math. Sci. Q. J. 5, no. 3 (2011), 259-266. es_ES
dc.description.references Y. Wang and G. Wei, Characterizing mixing, weak mixing and transitivity on induced hyperspace dynamical systems, Topology Appl. 155, no. 1 (2007), 56-68. https://doi.org/10.1016/j.topol.2007.09.003 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem