- -

Fixed poin sets in digital topology, 1

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Fixed poin sets in digital topology, 1

Show full item record

Boxer, L.; Staecker, PC. (2020). Fixed poin sets in digital topology, 1. Applied General Topology. 21(1):87-110. https://doi.org/10.4995/agt.2020.12091

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/141555

Files in this item

Item Metadata

Title: Fixed poin sets in digital topology, 1
Author: Boxer, Laurence Staecker, P. Christopher
Issued date:
Abstract:
[EN] In this paper, we examine some properties of the fixed point set of a digitally continuous function. The digital setting requires new methods that are not analogous to those of classical topological fixed point theory, ...[+]
Subjects: Digital image , Fixed point , Retraction
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2020.12091
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/agt.2020.12091
Type: Artículo

References

C. Berge, Graphs and Hypergraphs, 2nd edition, North-Holland, Amsterdam, 1976.

L. Boxer, Digitally continuous functions, Pattern Recognition Letters 15 (1994), 833-839. https://doi.org/10.1016/0167-8655(94)90012-4

L. Boxer, A classical construction for the digital fundamental group, Journal of Mathematical Imaging and Vision 10 (1999), 51-62. https://doi.org/10.1023/A:1008370600456 [+]
C. Berge, Graphs and Hypergraphs, 2nd edition, North-Holland, Amsterdam, 1976.

L. Boxer, Digitally continuous functions, Pattern Recognition Letters 15 (1994), 833-839. https://doi.org/10.1016/0167-8655(94)90012-4

L. Boxer, A classical construction for the digital fundamental group, Journal of Mathematical Imaging and Vision 10 (1999), 51-62. https://doi.org/10.1023/A:1008370600456

L. Boxer, Continuous maps on digital simple closed curves, Applied Mathematics 1 (2010), 377-386. https://doi.org/10.4236/am.2010.15050

L. Boxer, Generalized normal product adjacency in digital topology, Applied General Topology 18, no. 2 (2017), 401-427. https://doi.org/10.4995/agt.2017.7798

L. Boxer, Alternate product adjacencies in digital topology, Applied General Topology 19, no. 1 (2018), 21-53. https://doi.org/10.4995/agt.2018.7146

L. Boxer, Fixed points and freezing sets in digital topology, Proceedings, 2019 Interdisciplinary Colloquium in Topology and its Applications, in Vigo, Spain; 55-61.

L. Boxer, O. Ege, I. Karaca, J. Lopez, and J. Louwsma, Digital fixed points, approximate fixed points, and universal functions, Applied General Topology 17, no. 2 (2016), 159-172. https://doi.org/10.4995/agt.2016.4704

L. Boxer and I. Karaca, Fundamental groups for digital products, Advances and Applications in Mathematical Sciences 11, no. 4 (2012), 161-180.

L. Boxer and P. C. Staecker, Remarks on fixed point assertions in digital topology, Applied General Topology 20, no. 1 (2019), 135-153. https://doi.org/10.4995/agt.2019.10474

J. Haarmann, M. P. Murphy, C. S. Peters and P. C. Staecker, Homotopy equivalence in finite digital images, Journal of Mathematical Imaging and Vision 53 (2015), 288-302. https://doi.org/10.1007/s10851-015-0578-8

B. Jiang, Lectures on Nielsen fixed point theory, Contemporary Mathematics 18 (1983). https://doi.org/10.1090/conm/014

E. Khalimsky, Motion, deformation, and homotopy in finite spaces, in Proceedings IEEE Intl. Conf. on Systems, Man, and Cybernetics (1987), 227-234.

A. Rosenfeld, "Continuous" functions on digital pictures, Pattern Recognition Letters 4 (1986), 177-184. https://doi.org/10.1016/0167-8655(86)90017-6

P. C. Staecker, Some enumerations of binary digital images, arXiv:1502.06236, 2015.

[-]

This item appears in the following Collection(s)

Show full item record