- -

Topological characterizations of amenability and congeniality of bases

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Topological characterizations of amenability and congeniality of bases

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author López-Permouth, Sergio R. es_ES
dc.contributor.author Stanley, Benjamin es_ES
dc.date.accessioned 2020-04-27T09:39:25Z
dc.date.available 2020-04-27T09:39:25Z
dc.date.issued 2020-04-03
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/141567
dc.description.abstract [EN] We provide topological interpretations of the recently introduced notions of amenability and congeniality of bases of innite dimensional algebras. In order not to restrict our attention only to the countable dimension case, the uniformity of the topologies involved is analyzed and therefore the pertinent ideas about uniform topological spaces are surveyed.A basis B over an innite dimensional F-algebra A is called amenable if FB, the direct product indexed by B of copies of the eld F, can be made into an A-module in a natural way. (Mutual) congeniality is a relation that serves to identify cases when different amenable bases yield isomorphic A-modules.(Not necessarily mutual) congeniality between amenable bases yields an epimorphism of the modules they induce. We prove that this epimorphism is one-to-one only if the congeniality is mutual, thus establishing a precise distinction between the two notions. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Uniform topologies es_ES
dc.subject Linear vector spaces es_ES
dc.subject Amenable bases es_ES
dc.subject Congeniality of bases es_ES
dc.subject Schauder bases es_ES
dc.subject Infinite-dimensional modules and algebras es_ES
dc.title Topological characterizations of amenability and congeniality of bases es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2020.11488
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation López-Permouth, SR.; Stanley, B. (2020). Topological characterizations of amenability and congeniality of bases. Applied General Topology. 21(1):1-15. https://doi.org/10.4995/agt.2020.11488 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2020.11488 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\11488 es_ES
dc.description.references L. M. Al-Essa, S. R. López-Permouth and N. M. Muthana, Modules over infinite-dimensional algebras, Linear and Multilinear Algebra 66 (2018), 488-496. https://doi.org/10.1080/03081087.2017.1301365 es_ES
dc.description.references P. Aydogdu, S. R. López-Permouth and R. Muhammad, Infinite-dimensional algebras without simple bases, Linear and Multilinear Algebra, to appear. es_ES
dc.description.references J. Díaz Boils, S. R. López-Permouth and R. Muhammad, Amenable and simple bases of tensor products of infinite dimensional algebras, preprint. es_ES
dc.description.references R. Engelking, General Topology, Sigma Series in Pure Mathematics, vol. 6 (1989). es_ES
dc.description.references S. R. López-Permouth and B. Stanley, On the amenability profile of an infinite dimensional module over an algebra, preprint. es_ES
dc.description.references P. Nielsen, Row and column finite matrices, Proc. Amer. Math. Soc. 135, no. 9 (2007), 2689-2697. https://doi.org/10.1090/S0002-9939-07-08790-4 es_ES
dc.description.references B. Stanley, Perspectives on amenability and congeniality of bases, Ph. Dissertation, Ohio University, February 2019. es_ES
dc.description.references S. Willard, General Topology, Dover Publications (1970). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem