Mostrar el registro sencillo del ítem
dc.contributor.author | Dagliati, Arianna | es_ES |
dc.contributor.author | Sacchi, Lucia | es_ES |
dc.contributor.author | Tibollo, V. | es_ES |
dc.contributor.author | Cogni, G. | es_ES |
dc.contributor.author | Teliti, M. | es_ES |
dc.contributor.author | Martinez-Millana, Antonio | es_ES |
dc.contributor.author | Traver Salcedo, Vicente | es_ES |
dc.contributor.author | Segagni, Daniele | es_ES |
dc.contributor.author | Posada, J. | es_ES |
dc.contributor.author | Ottaviano, M. | es_ES |
dc.contributor.author | Fico, Giuseppe | es_ES |
dc.contributor.author | Arredondo, M.T. | es_ES |
dc.contributor.author | De Cata, P. | es_ES |
dc.contributor.author | Chiovato, L. | es_ES |
dc.contributor.author | Bellazzi, Riccardo | es_ES |
dc.date.accessioned | 2020-04-28T06:01:47Z | |
dc.date.available | 2020-04-28T06:01:47Z | |
dc.date.issued | 2018-02 | es_ES |
dc.identifier.issn | 1067-5027 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/141636 | |
dc.description.abstract | [EN] Objective To describe the development, as part of the European Union MOSAIC (Models and Simulation Techniques for Discovering Diabetes Influence Factors) project, of a dashboard-based system for the management of type 2 diabetes and assess its impact on clinical practice. Methods The MOSAIC dashboard system is based on predictive modeling, longitudinal data analytics, and the reuse and integration of data from hospitals and public health repositories. Data are merged into an i2b2 data warehouse, which feeds a set of advanced temporal analytic models, including temporal abstractions, care-flow mining, drug exposure pattern detection, and risk-prediction models for type 2 diabetes complications. The dashboard has 2 components, designed for (1) clinical decision support during follow-up consultations and (2) outcome assessment on populations of interest. To assess the impact of the clinical decision support component, a pre-post study was conducted considering visit duration, number of screening examinations, and lifestyle interventions. A pilot sample of 700 Italian patients was investigated. Judgments on the outcome assessment component were obtained via focus groups with clinicians and health care managers. Results The use of the decision support component in clinical activities produced a reduction in visit duration (P¿¿¿.01) and an increase in the number of screening exams for complications (P¿<¿.01). We also observed a relevant, although nonstatistically significant, increase in the proportion of patients receiving lifestyle interventions (from 69% to 77%). Regarding the outcome assessment component, focus groups highlighted the system¿s capability of identifying and understanding the characteristics of patient subgroups treated at the center. Conclusion Our study demonstrates that decision support tools based on the integration of multiple-source data and visual and predictive analytics do improve the management of a chronic disease such as type 2 diabetes by enacting a successful implementation of the learning health care system cycle. | es_ES |
dc.description.sponsorship | This work was supported by the European Union in the Seventh Framework Programme, grant number 600914. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Oxford University Press | es_ES |
dc.relation.ispartof | Journal of the American Medical Informatics Association | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Clinical decision support systems | es_ES |
dc.subject | Data integration | es_ES |
dc.subject | Temporal data analytics | es_ES |
dc.subject | Type 2 diabetes | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | A dashboard-based system for supporting diabetes care | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1093/jamia/ocx159 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/600914/EU/MOSAIC - MOdels and Simulation techniques for discovering diAbetes Influence faCtors/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Dagliati, A.; Sacchi, L.; Tibollo, V.; Cogni, G.; Teliti, M.; Martinez-Millana, A.; Traver Salcedo, V.... (2018). A dashboard-based system for supporting diabetes care. Journal of the American Medical Informatics Association. 25(5):538-547. https://doi.org/10.1093/jamia/ocx159 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1093/jamia/ocx159 | es_ES |
dc.description.upvformatpinicio | 538 | es_ES |
dc.description.upvformatpfin | 547 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 25 | es_ES |
dc.description.issue | 5 | es_ES |
dc.identifier.pmid | 29409033 | es_ES |
dc.relation.pasarela | S\351931 | es_ES |
dc.description.references | Sim, I., Gorman, P., Greenes, R. A., Haynes, R. B., Kaplan, B., Lehmann, H., & Tang, P. C. (2001). Clinical Decision Support Systems for the Practice of Evidence-based Medicine. Journal of the American Medical Informatics Association, 8(6), 527-534. doi:10.1136/jamia.2001.0080527 | es_ES |
dc.description.references | Palmer, A. J., Roze, S., Valentine, W. J., Minshall, M. E., Foos, V., Lurati, F. M., … Spinas, G. A. (2004). The CORE Diabetes Model: Projecting Long-term Clinical Outcomes, Costs and Costeffectiveness of Interventions in Diabetes Mellitus (Types 1 and 2) to Support Clinical and Reimbursement Decision-making. Current Medical Research and Opinion, 20(sup1), S5-S26. doi:10.1185/030079904x1980 | es_ES |
dc.description.references | O’Connor, P. J., Bodkin, N. L., Fradkin, J., Glasgow, R. E., Greenfield, S., Gregg, E., … Wysham, C. H. (2011). Diabetes Performance Measures: Current Status and Future Directions. Diabetes Care, 34(7), 1651-1659. doi:10.2337/dc11-0735 | es_ES |
dc.description.references | Donsa, K., Beck, P., Höll, B., Mader, J. K., Schaupp, L., Plank, J., … Pieber, T. R. (2016). Impact of errors in paper-based and computerized diabetes management with decision support for hospitalized patients with type 2 diabetes. A post-hoc analysis of a before and after study. International Journal of Medical Informatics, 90, 58-67. doi:10.1016/j.ijmedinf.2016.03.007 | es_ES |
dc.description.references | Sáenz, A., Brito, M., Morón, I., Torralba, A., García-Sanz, E., & Redondo, J. (2012). Development and Validation of a Computer Application to Aid the Physician’s Decision-Making Process at the Start of and during Treatment with Insulin in Type 2 Diabetes: A Randomized and Controlled Trial. Journal of Diabetes Science and Technology, 6(3), 581-588. doi:10.1177/193229681200600313 | es_ES |
dc.description.references | Ampudia-Blasco, F. J., Benhamou, P. Y., Charpentier, G., Consoli, A., Diamant, M., Gallwitz, B., … Stoevelaar, H. (2015). A Decision Support Tool for Appropriate Glucose-Lowering Therapy in Patients with Type 2 Diabetes. Diabetes Technology & Therapeutics, 17(3), 194-202. doi:10.1089/dia.2014.0260 | es_ES |
dc.description.references | Lim, S., Kang, S. M., Shin, H., Lee, H. J., Won Yoon, J., Yu, S. H., … Jang, H. C. (2011). Improved Glycemic Control Without Hypoglycemia in Elderly Diabetic Patients Using the Ubiquitous Healthcare Service, a New Medical Information System. Diabetes Care, 34(2), 308-313. doi:10.2337/dc10-1447 | es_ES |
dc.description.references | Lipton, J. A., Barendse, R. J., Akkerhuis, K. M., Schinkel, A. F. L., & Simoons, M. L. (2010). Evaluation of a Clinical Decision Support System for Glucose Control. Critical Pathways in Cardiology: A Journal of Evidence-Based Medicine, 9(3), 140-147. doi:10.1097/hpc.0b013e3181e7d7ca | es_ES |
dc.description.references | Neubauer, K. M., Mader, J. K., Höll, B., Aberer, F., Donsa, K., Augustin, T., … Pieber, T. R. (2015). Standardized Glycemic Management with a Computerized Workflow and Decision Support System for Hospitalized Patients with Type 2 Diabetes on Different Wards. Diabetes Technology & Therapeutics, 17(10), 685-692. doi:10.1089/dia.2015.0027 | es_ES |
dc.description.references | Rodbard, D., & Vigersky, R. A. (2011). Design of a Decision Support System to Help Clinicians Manage Glycemia in Patients with Type 2 Diabetes Mellitus. Journal of Diabetes Science and Technology, 5(2), 402-411. doi:10.1177/193229681100500230 | es_ES |
dc.description.references | Augstein, P., Vogt, L., Kohnert, K.-D., Heinke, P., & Salzsieder, E. (2010). Translation of Personalized Decision Support into Routine Diabetes Care. Journal of Diabetes Science and Technology, 4(6), 1532-1539. doi:10.1177/193229681000400631 | es_ES |
dc.description.references | Reza, A. W., & Eswaran, C. (2009). A Decision Support System for Automatic Screening of Non-proliferative Diabetic Retinopathy. Journal of Medical Systems, 35(1), 17-24. doi:10.1007/s10916-009-9337-y | es_ES |
dc.description.references | Kumar, S. J. J., & Madheswaran, M. (2012). An Improved Medical Decision Support System to Identify the Diabetic Retinopathy Using Fundus Images. Journal of Medical Systems, 36(6), 3573-3581. doi:10.1007/s10916-012-9833-3 | es_ES |
dc.description.references | Cho, B. H., Yu, H., Kim, K.-W., Kim, T. H., Kim, I. Y., & Kim, S. I. (2008). Application of irregular and unbalanced data to predict diabetic nephropathy using visualization and feature selection methods. Artificial Intelligence in Medicine, 42(1), 37-53. doi:10.1016/j.artmed.2007.09.005 | es_ES |
dc.description.references | Cleveringa, F. G. W., Gorter, K. J., van den Donk, M., & Rutten, G. E. H. M. (2008). Combined Task Delegation, Computerized Decision Support, and Feedback Improve Cardiovascular Risk for Type 2 Diabetic Patients: A cluster randomized trial in primary care. Diabetes Care, 31(12), 2273-2275. doi:10.2337/dc08-0312 | es_ES |
dc.description.references | Haussler, B., Fischer, G. C., Meyer, S., & Sturm, D. (2007). Risk assessment in diabetes management: how do general practitioners estimate risks due to diabetes? Quality and Safety in Health Care, 16(3), 208-212. doi:10.1136/qshc.2006.019539 | es_ES |
dc.description.references | Heselmans, A., Van de Velde, S., Ramaekers, D., Vander Stichele, R., & Aertgeerts, B. (2013). Feasibility and impact of an evidence-based electronic decision support system for diabetes care in family medicine: protocol for a cluster randomized controlled trial. Implementation Science, 8(1). doi:10.1186/1748-5908-8-83 | es_ES |
dc.description.references | Koopman, R. J., Kochendorfer, K. M., Moore, J. L., Mehr, D. R., Wakefield, D. S., Yadamsuren, B., … Belden, J. L. (2011). A Diabetes Dashboard and Physician Efficiency and Accuracy in Accessing Data Needed for High-Quality Diabetes Care. The Annals of Family Medicine, 9(5), 398-405. doi:10.1370/afm.1286 | es_ES |
dc.description.references | Den Ouden, H., Vos, R. C., Reidsma, C., & Rutten, G. E. (2015). Shared decision making in type 2 diabetes with a support decision tool that takes into account clinical factors, the intensity of treatment and patient preferences: design of a cluster randomised (OPTIMAL) trial. BMC Family Practice, 16(1). doi:10.1186/s12875-015-0230-0 | es_ES |
dc.description.references | Holbrook, A., Thabane, L., Keshavjee, K., Dolovich, L., Bernstein, B., … Chan, D. (2009). Individualized electronic decision support and reminders to improve diabetes care in the community: COMPETE II randomized trial. Canadian Medical Association Journal, 181(1-2), 37-44. doi:10.1503/cmaj.081272 | es_ES |
dc.description.references | O’Reilly, D., Holbrook, A., Blackhouse, G., Troyan, S., & Goeree, R. (2012). Cost-effectiveness of a shared computerized decision support system for diabetes linked to electronic medical records. Journal of the American Medical Informatics Association, 19(3), 341-345. doi:10.1136/amiajnl-2011-000371 | es_ES |
dc.description.references | Parker, R. F., Mohamed, A. Z., Hassoun, S. A., Miles, S., & Fernando, D. J. S. (2014). The Effect of Using a Shared Electronic Health Record on Quality of Care in People With Type 2 Diabetes. Journal of Diabetes Science and Technology, 8(5), 1064-1065. doi:10.1177/1932296814536880 | es_ES |
dc.description.references | Caban, J. J., & Gotz, D. (2015). Visual analytics in healthcare - opportunities and research challenges. Journal of the American Medical Informatics Association, 22(2), 260-262. doi:10.1093/jamia/ocv006 | es_ES |
dc.description.references | Mick, J. (2011). Data-Driven Decision Making. JONA: The Journal of Nursing Administration, 41(10), 391-393. doi:10.1097/nna.0b013e31822edb8c | es_ES |
dc.description.references | Batley, N. J., Osman, H. O., Kazzi, A. A., & Musallam, K. M. (2011). Implementation of an Emergency Department Computer System: Design Features That Users Value. The Journal of Emergency Medicine, 41(6), 693-700. doi:10.1016/j.jemermed.2010.05.014 | es_ES |
dc.description.references | Sprague, A. E., Dunn, S. I., Fell, D. B., Harrold, J., Walker, M. C., Kelly, S., & Smith, G. N. (2013). Measuring Quality in Maternal-Newborn Care: Developing a Clinical Dashboard. Journal of Obstetrics and Gynaecology Canada, 35(1), 29-38. doi:10.1016/s1701-2163(15)31045-8 | es_ES |
dc.description.references | WILBANKS, B. A., & LANGFORD, P. A. (2014). A Review of Dashboards for Data Analytics in Nursing. CIN: Computers, Informatics, Nursing, 32(11), 545-549. doi:10.1097/cin.0000000000000106 | es_ES |
dc.description.references | Hartzler, A. L., Izard, J. P., Dalkin, B. L., Mikles, S. P., & Gore, J. L. (2015). Design and feasibility of integrating personalized PRO dashboards into prostate cancer care. Journal of the American Medical Informatics Association, 23(1), 38-47. doi:10.1093/jamia/ocv101 | es_ES |
dc.description.references | Dixon, B. E., Jabour, A. M., Phillips, E. O., & Marrero, D. G. (2014). An informatics approach to medication adherence assessment and improvement using clinical, billing, and patient-entered data. Journal of the American Medical Informatics Association, 21(3), 517-521. doi:10.1136/amiajnl-2013-001959 | es_ES |
dc.description.references | Murphy, S. N., Weber, G., Mendis, M., Gainer, V., Chueh, H. C., Churchill, S., & Kohane, I. (2010). Serving the enterprise and beyond with informatics for integrating biology and the bedside (i2b2). Journal of the American Medical Informatics Association, 17(2), 124-130. doi:10.1136/jamia.2009.000893 | es_ES |
dc.description.references | Shahar, Y., & Musen, M. A. (1996). Knowledge-based temporal abstraction in clinical domains. Artificial Intelligence in Medicine, 8(3), 267-298. doi:10.1016/0933-3657(95)00036-4 | es_ES |
dc.description.references | Sacchi, L., Capozzi, D., Bellazzi, R., & Larizza, C. (2015). JTSA: An open source framework for time series abstractions. Computer Methods and Programs in Biomedicine, 121(3), 175-188. doi:10.1016/j.cmpb.2015.05.006 | es_ES |
dc.description.references | Dagliati, A., Sacchi, L., Zambelli, A., Tibollo, V., Pavesi, L., Holmes, J. H., & Bellazzi, R. (2017). Temporal electronic phenotyping by mining careflows of breast cancer patients. Journal of Biomedical Informatics, 66, 136-147. doi:10.1016/j.jbi.2016.12.012 | es_ES |
dc.description.references | Hripcsak, G., & Albers, D. J. (2013). Next-generation phenotyping of electronic health records. Journal of the American Medical Informatics Association, 20(1), 117-121. doi:10.1136/amiajnl-2012-001145 | es_ES |
dc.description.references | Bijlsma, M. J., Janssen, F., & Hak, E. (2015). Estimating time-varying drug adherence using electronic records: extending the proportion of days covered (PDC) method. Pharmacoepidemiology and Drug Safety, 25(3), 325-332. doi:10.1002/pds.3935 | es_ES |
dc.description.references | Robusto, F., Lepore, V., D’Ettorre, A., Lucisano, G., De Berardis, G., Bisceglia, L., … Nicolucci, A. (2016). The Drug Derived Complexity Index (DDCI) Predicts Mortality, Unplanned Hospitalization and Hospital Readmissions at the Population Level. PLOS ONE, 11(2), e0149203. doi:10.1371/journal.pone.0149203 | es_ES |
dc.description.references | De Berardis, G., D’Ettorre, A., Graziano, G., Lucisano, G., Pellegrini, F., Cammarota, S., … Nicolucci, A. (2012). The burden of hospitalization related to diabetes mellitus: A population-based study. Nutrition, Metabolism and Cardiovascular Diseases, 22(7), 605-612. doi:10.1016/j.numecd.2010.10.016 | es_ES |
dc.description.references | Van Gemert-Pijnen, J. E., Nijland, N., van Limburg, M., Ossebaard, H. C., Kelders, S. M., Eysenbach, G., & Seydel, E. R. (2011). A Holistic Framework to Improve the Uptake and Impact of eHealth Technologies. Journal of Medical Internet Research, 13(4), e111. doi:10.2196/jmir.1672 | es_ES |
dc.description.references | Shahar, Y. (1997). A framework for knowledge-based temporal abstraction. Artificial Intelligence, 90(1-2), 79-133. doi:10.1016/s0004-3702(96)00025-2 | es_ES |
dc.description.references | Tenenbaum, J. D., Avillach, P., Benham-Hutchins, M., Breitenstein, M. K., Crowgey, E. L., Hoffman, M. A., … Freimuth, R. R. (2016). An informatics research agenda to support precision medicine: seven key areas. Journal of the American Medical Informatics Association, 23(4), 791-795. doi:10.1093/jamia/ocv213 | es_ES |
dc.description.references | Bottomly, D., McWeeney, S. K., & Wilmot, B. (2015). HitWalker2: visual analytics for precision medicine and beyond. Bioinformatics, 32(8), 1253-1255. doi:10.1093/bioinformatics/btv739 | es_ES |
dc.description.references | Fabris, C., Facchinetti, A., Fico, G., Sambo, F., Arredondo, M. T., & Cobelli, C. (2015). Parsimonious Description of Glucose Variability in Type 2 Diabetes by Sparse Principal Component Analysis. Journal of Diabetes Science and Technology, 10(1), 119-124. doi:10.1177/1932296815596173 | es_ES |
dc.description.references | Hassenzahl, M., Wiklund-Engblom, A., Bengs, A., Hägglund, S., & Diefenbach, S. (2015). Experience-Oriented and Product-Oriented Evaluation: Psychological Need Fulfillment, Positive Affect, and Product Perception. International Journal of Human-Computer Interaction, 31(8), 530-544. doi:10.1080/10447318.2015.1064664 | es_ES |