- -

Densities, infrared band strengths, and optical constants of solid methanol

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Densities, infrared band strengths, and optical constants of solid methanol

Show simple item record

Files in this item

dc.contributor.author Luna Molina, Ramón es_ES
dc.contributor.author Molpeceres, Germán es_ES
dc.contributor.author Ortigoso, Juan es_ES
dc.contributor.author Satorre, M. Á. es_ES
dc.contributor.author Domingo Beltran, Manuel es_ES
dc.contributor.author Maté, Belén es_ES
dc.date.accessioned 2020-04-29T07:04:24Z
dc.date.available 2020-04-29T07:04:24Z
dc.date.issued 2018-09 es_ES
dc.identifier.issn 0004-6361 es_ES
dc.identifier.uri http://hdl.handle.net/10251/141946
dc.description.abstract [EN] Contact. The increasing capabilities of space missions like the James Webb Space Telescope or ground-based observatories like the European Extremely Large Telescope demand high quality laboratory data of species in astrophysical conditions for the interpretation of their findings. Aims. We provide new physical and spectroscopic data of solid methanol that will help to identify this species in astronomical environments. Methods. Ices were grown by vapour deposition in high vacuum chambers. Densities were measured via a cryogenic quartz crystal microbalance and laser interferometry. Absorbance infrared spectra of methanol ices of different thickness were recorded to obtain optical constants using an iterative minimization procedure. Infrared band strengths were determined from infrared spectra and ice densities. Results. Solid methanol densities measured at eight temperatures vary between 0.64 g cm(-3) at 20 K and 0.84 g cm(-3 )at 130 K. The visible refractive index at 633 nm grows from 1.26 to 1.35 in that temperature range. New infrared optical constants and band strengths are given from 650 to 5000 cm(-1) (15.4-2.0 mu m) at the same eight temperatures. The study was made on ices directly grown at the indicated temperatures, and amorphous and crystalline phases have been recognized. Our optical constants differ from those previously reported in the literature for an ice grown at 10 K and subsequently warmed. The disagreement is due to different ice morphologies. The new infrared band strengths agree with previous literature data when the correct densities are considered. es_ES
dc.description.sponsorship Funds have been provided for this research by the Spanish MINECO, Project FIS2016-77726-C3-1-P and FIS2016-77726-C3-3-P. German Molpeceres acknowledges MINECO PhD grant BES-2014-069355. We are grateful to R. Escribano for helpful discussions. Our skillful technicians C. Santonja, M. A. Moreno, and J. Rodriguez are also gratefully acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher EDP Sciences es_ES
dc.relation.ispartof Astronomy and Astrophysics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Solid state: Volatile es_ES
dc.subject Methods: Laboratory es_ES
dc.subject Molecular es_ES
dc.subject Techniques: Spectroscopic es_ES
dc.subject ISM: Abundances es_ES
dc.subject Infrared: ISM es_ES
dc.subject Infrared: planetary systems es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Densities, infrared band strengths, and optical constants of solid methanol es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1051/0004-6361/201833463 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FIS2016-77726-C3-1-P/ES/HIELO, GAS Y POLVO EN ASTROFISICA DE LABORATORIO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2014-069355/ES/BES-2014-069355/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FIS2016-77726-C3-3-P/ES/ICE, GAS AND DUST IN LABORATORY ASTROPHYSICS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Luna Molina, R.; Molpeceres, G.; Ortigoso, J.; Satorre, MÁ.; Domingo Beltran, M.; Maté, B. (2018). Densities, infrared band strengths, and optical constants of solid methanol. Astronomy and Astrophysics. 617:1-9. https://doi.org/10.1051/0004-6361/201833463 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1051/0004-6361/201833463 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 617 es_ES
dc.relation.pasarela S\374550 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Boogert, A. C. A., Pontoppidan, K. M., Knez, C., Lahuis, F., Kessler‐Silacci, J., van Dishoeck, E. F., … Stapelfeldt, K. R. (2008). The c2dSpitzerSpectroscopic Survey of Ices around Low‐Mass Young Stellar Objects. I. H2O and the 5–8 μm Bands1,2. The Astrophysical Journal, 678(2), 985-1004. doi:10.1086/533425 es_ES
dc.description.references Boogert, A. C. A., Gerakines, P. A., & Whittet, D. C. B. (2015). Observations of the Icy Universe. Annual Review of Astronomy and Astrophysics, 53(1), 541-581. doi:10.1146/annurev-astro-082214-122348 es_ES
dc.description.references Bossa, J.-B., Maté, B., Fransen, C., Cazaux, S., Pilling, S., Rocha, W. R. M., … Linnartz, H. (2015). POROSITY AND BAND-STRENGTH MEASUREMENTS OF MULTI-PHASE COMPOSITE ICES. The Astrophysical Journal, 814(1), 47. doi:10.1088/0004-637x/814/1/47 es_ES
dc.description.references Bottinelli, S., Boogert, A. C. A., Bouwman, J., Beckwith, M., van Dishoeck, E. F., Öberg, K. I., … Lahuis, F. (2010). THE c2dSPITZERSPECTROSCOPIC SURVEY OF ICES AROUND LOW-MASS YOUNG STELLAR OBJECTS. IV. NH3AND CH3OH. The Astrophysical Journal, 718(2), 1100-1117. doi:10.1088/0004-637x/718/2/1100 es_ES
dc.description.references Bouilloud, M., Fray, N., Bénilan, Y., Cottin, H., Gazeau, M.-C., & Jolly, A. (2015). Bibliographic review and new measurements of the infrared band strengths of pure molecules at 25 K: H2O, CO2, CO, CH4, NH3, CH3OH, HCOOH and H2CO. Monthly Notices of the Royal Astronomical Society, 451(2), 2145-2160. doi:10.1093/mnras/stv1021 es_ES
dc.description.references Cazaux, S., Bossa, J.-B., Linnartz, H., & Tielens, A. G. G. M. (2014). Pore evolution in interstellar ice analogues. Astronomy & Astrophysics, 573, A16. doi:10.1051/0004-6361/201424466 es_ES
dc.description.references Dohnálek, Z., Kimmel, G. A., Ayotte, P., Smith, R. S., & Kay, B. D. (2003). The deposition angle-dependent density of amorphous solid water films. The Journal of Chemical Physics, 118(1), 364-372. doi:10.1063/1.1525805 es_ES
dc.description.references Drabek-Maunder E., Greaves J., Fraser H. J., Clements D. L., & Alconcel L. N. 2017, Int. J. Astrobiol., DOI: 10.1017/S1473550417000428 es_ES
dc.description.references Gálvez, O., Maté, B., Martín-Llorente, B., Herrero, V. J., & Escribano, R. (2009). Phases of Solid Methanol. The Journal of Physical Chemistry A, 113(14), 3321-3329. doi:10.1021/jp810239r es_ES
dc.description.references Gerakines, P. A., Bray, J. J., Davis, A., & Richey, C. R. (2005). The Strengths of Near‐Infrared Absorption Features Relevant to Interstellar and Planetary Ices. The Astrophysical Journal, 620(2), 1140-1150. doi:10.1086/427166 es_ES
dc.description.references Hodyss, R., Parkinson, C. D., Johnson, P. V., Stern, J. V., Goguen, J. D., Yung, Y. L., & Kanik, I. (2009). Methanol on Enceladus. Geophysical Research Letters, 36(17). doi:10.1029/2009gl039336 es_ES
dc.description.references Hudgins, D. M., Sandford, S. A., Allamandola, L. J., & Tielens, A. G. G. M. (1993). Mid- and far-infrared spectroscopy of ices - Optical constants and integrated absorbances. The Astrophysical Journal Supplement Series, 86, 713. doi:10.1086/191796 es_ES
dc.description.references Hudson, R. L., Ferrante, R. F., & Moore, M. H. (2014). Infrared spectra and optical constants of astronomical ices: I. Amorphous and crystalline acetylene. Icarus, 228, 276-287. doi:10.1016/j.icarus.2013.08.029 es_ES
dc.description.references Ioppolo, S., van Boheemen, Y., Cuppen, H. M., van Dishoeck, E. F., & Linnartz, H. (2011). Surface formation of CO2 ice at low temperatures. Monthly Notices of the Royal Astronomical Society, 413(3), 2281-2287. doi:10.1111/j.1365-2966.2011.18306.x es_ES
dc.description.references Isokoski, K., Bossa, J.-B., Triemstra, T., & Linnartz, H. (2014). Porosity and thermal collapse measurements of H2O, CH3OH, CO2, and H2O:CO2 ices. Physical Chemistry Chemical Physics, 16(8), 3456. doi:10.1039/c3cp54481h es_ES
dc.description.references Maté, B., Gálvez, Ó., Herrero, V. J., & Escribano, R. (2008). INFRARED SPECTRA AND THERMODYNAMIC PROPERTIES OF CO2/METHANOL ICES. The Astrophysical Journal, 690(1), 486-495. doi:10.1088/0004-637x/690/1/486 es_ES
dc.description.references Merlin, F., Quirico, E., Barucci, M. A., & de Bergh, C. (2012). Methanol ice on the surface of minor bodies in the solar system. Astronomy & Astrophysics, 544, A20. doi:10.1051/0004-6361/201219181 es_ES
dc.description.references Molpeceres, G., Satorre, M. A., Ortigoso, J., Millán, C., Escribano, R., & Maté, B. (2016). OPTICAL CONSTANTS AND BAND STRENGTHS OF CH4:C2H6ICES IN THE NEAR- AND MID-INFRARED. The Astrophysical Journal, 825(2), 156. doi:10.3847/0004-637x/825/2/156 es_ES
dc.description.references Öberg, K. I. (2016). Photochemistry and Astrochemistry: Photochemical Pathways to Interstellar Complex Organic Molecules. Chemical Reviews, 116(17), 9631-9663. doi:10.1021/acs.chemrev.5b00694 es_ES
dc.description.references Pontoppidan, K. M., Dartois, E., van Dishoeck, E. F., Thi, W.-F., & d’ Hendecourt, L. (2003). Detection of abundant solid methanol toward young low mass stars. Astronomy & Astrophysics, 404(1), L17-L20. doi:10.1051/0004-6361:20030617 es_ES
dc.description.references Sandford, S. A., & Allamandola, L. J. (1993). Condensation and vaporization studies of CH3OH and NH3 ices: Major implications for astrochemistry. The Astrophysical Journal, 417, 815. doi:10.1086/173362 es_ES
dc.description.references Satorre, M. Á., Domingo, M., Millán, C., Luna, R., Vilaplana, R., & Santonja, C. (2008). Density of , and ices at different temperatures of deposition. Planetary and Space Science, 56(13), 1748-1752. doi:10.1016/j.pss.2008.07.015 es_ES
dc.description.references Satorre, M. Á., Leliwa-Kopystynski, J., Santonja, C., & Luna, R. (2013). Refractive index and density of ammonia ice at different temperatures of deposition. Icarus, 225(1), 703-708. doi:10.1016/j.icarus.2013.04.023 es_ES
dc.description.references Satorre, M. Á., Millán, C., Molpeceres, G., Luna, R., Maté, B., Domingo, M., … Santonja, C. (2017). Densities and refractive indices of ethane and ethylene at astrophysically relevant temperatures. Icarus, 296, 179-182. doi:10.1016/j.icarus.2017.05.005 es_ES
dc.description.references Sauerbrey, G. (1959). Verwendung von Schwingquarzen zur W�gung d�nner Schichten und zur Mikrow�gung. Zeitschrift f�r Physik, 155(2), 206-222. doi:10.1007/bf01337937 es_ES
dc.description.references Torrie, B. H., Weng, S.-X., & Powell, B. M. (1989). Structure of the α-phase of solid methanol. Molecular Physics, 67(3), 575-581. doi:10.1080/00268978900101291 es_ES
dc.description.references Watanabe, N., & Kouchi, A. (2002). Efficient Formation of Formaldehyde and Methanol by the Addition of Hydrogen Atoms to CO in H[TINF]2[/TINF]O-CO Ice at 10 K. The Astrophysical Journal, 571(2), L173-L176. doi:10.1086/341412 es_ES
dc.description.references Weast R. 1972, Handbook of Chemistry and Physics, 53rd edn. (Cleveland: Chemical Rubber Co.), 155 es_ES
dc.description.references Zanchet, A., Rodríguez-Lazcano, Y., Gálvez, Ó., Herrero, V. J., Escribano, R., & Maté, B. (2013). OPTICAL CONSTANTS OF NH3AND NH3:N2AMORPHOUS ICES IN THE NEAR-INFRARED AND MID-INFRARED REGIONS. The Astrophysical Journal, 777(1), 26. doi:10.1088/0004-637x/777/1/26 es_ES


This item appears in the following Collection(s)

Show simple item record