dc.contributor.author |
Luna Molina, Ramón
|
es_ES |
dc.contributor.author |
Molpeceres, Germán
|
es_ES |
dc.contributor.author |
Ortigoso, Juan
|
es_ES |
dc.contributor.author |
Satorre, M. Á.
|
es_ES |
dc.contributor.author |
Domingo Beltran, Manuel
|
es_ES |
dc.contributor.author |
Maté, Belén
|
es_ES |
dc.date.accessioned |
2020-04-29T07:04:24Z |
|
dc.date.available |
2020-04-29T07:04:24Z |
|
dc.date.issued |
2018-09 |
es_ES |
dc.identifier.issn |
0004-6361 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/141946 |
|
dc.description.abstract |
[EN] Contact. The increasing capabilities of space missions like the James Webb Space Telescope or ground-based observatories like the European Extremely Large Telescope demand high quality laboratory data of species in astrophysical conditions for the interpretation of their findings.
Aims. We provide new physical and spectroscopic data of solid methanol that will help to identify this species in astronomical environments.
Methods. Ices were grown by vapour deposition in high vacuum chambers. Densities were measured via a cryogenic quartz crystal microbalance and laser interferometry. Absorbance infrared spectra of methanol ices of different thickness were recorded to obtain optical constants using an iterative minimization procedure. Infrared band strengths were determined from infrared spectra and ice densities.
Results. Solid methanol densities measured at eight temperatures vary between 0.64 g cm(-3) at 20 K and 0.84 g cm(-3 )at 130 K. The visible refractive index at 633 nm grows from 1.26 to 1.35 in that temperature range. New infrared optical constants and band strengths are given from 650 to 5000 cm(-1) (15.4-2.0 mu m) at the same eight temperatures. The study was made on ices directly grown at the indicated temperatures, and amorphous and crystalline phases have been recognized. Our optical constants differ from those previously reported in the literature for an ice grown at 10 K and subsequently warmed. The disagreement is due to different ice morphologies. The new infrared band strengths agree with previous literature data when the correct densities are considered. |
es_ES |
dc.description.sponsorship |
Funds have been provided for this research by the Spanish MINECO, Project FIS2016-77726-C3-1-P and FIS2016-77726-C3-3-P. German Molpeceres acknowledges MINECO PhD grant BES-2014-069355. We are grateful to R. Escribano for helpful discussions. Our skillful technicians C. Santonja, M. A. Moreno, and J. Rodriguez are also gratefully acknowledged. |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
EDP Sciences |
es_ES |
dc.relation.ispartof |
Astronomy and Astrophysics |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Solid state: Volatile |
es_ES |
dc.subject |
Methods: Laboratory |
es_ES |
dc.subject |
Molecular |
es_ES |
dc.subject |
Techniques: Spectroscopic |
es_ES |
dc.subject |
ISM: Abundances |
es_ES |
dc.subject |
Infrared: ISM |
es_ES |
dc.subject |
Infrared: planetary systems |
es_ES |
dc.subject.classification |
FISICA APLICADA |
es_ES |
dc.title |
Densities, infrared band strengths, and optical constants of solid methanol |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1051/0004-6361/201833463 |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MINECO//FIS2016-77726-C3-1-P/ES/HIELO, GAS Y POLVO EN ASTROFISICA DE LABORATORIO/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MINECO//BES-2014-069355/ES/BES-2014-069355/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MINECO//FIS2016-77726-C3-3-P/ES/ICE, GAS AND DUST IN LABORATORY ASTROPHYSICS/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada |
es_ES |
dc.description.bibliographicCitation |
Luna Molina, R.; Molpeceres, G.; Ortigoso, J.; Satorre, MÁ.; Domingo Beltran, M.; Maté, B. (2018). Densities, infrared band strengths, and optical constants of solid methanol. Astronomy and Astrophysics. 617:1-9. https://doi.org/10.1051/0004-6361/201833463 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.1051/0004-6361/201833463 |
es_ES |
dc.description.upvformatpinicio |
1 |
es_ES |
dc.description.upvformatpfin |
9 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
617 |
es_ES |
dc.relation.pasarela |
S\374550 |
es_ES |
dc.contributor.funder |
Ministerio de Economía y Competitividad |
es_ES |
dc.description.references |
Boogert, A. C. A., Pontoppidan, K. M., Knez, C., Lahuis, F., Kessler‐Silacci, J., van Dishoeck, E. F., … Stapelfeldt, K. R. (2008). The c2dSpitzerSpectroscopic Survey of Ices around Low‐Mass Young Stellar Objects. I. H2O and the 5–8 μm Bands1,2. The Astrophysical Journal, 678(2), 985-1004. doi:10.1086/533425 |
es_ES |
dc.description.references |
Boogert, A. C. A., Gerakines, P. A., & Whittet, D. C. B. (2015). Observations of the Icy Universe. Annual Review of Astronomy and Astrophysics, 53(1), 541-581. doi:10.1146/annurev-astro-082214-122348 |
es_ES |
dc.description.references |
Bossa, J.-B., Maté, B., Fransen, C., Cazaux, S., Pilling, S., Rocha, W. R. M., … Linnartz, H. (2015). POROSITY AND BAND-STRENGTH MEASUREMENTS OF MULTI-PHASE COMPOSITE ICES. The Astrophysical Journal, 814(1), 47. doi:10.1088/0004-637x/814/1/47 |
es_ES |
dc.description.references |
Bottinelli, S., Boogert, A. C. A., Bouwman, J., Beckwith, M., van Dishoeck, E. F., Öberg, K. I., … Lahuis, F. (2010). THE c2dSPITZERSPECTROSCOPIC SURVEY OF ICES AROUND LOW-MASS YOUNG STELLAR OBJECTS. IV. NH3AND CH3OH. The Astrophysical Journal, 718(2), 1100-1117. doi:10.1088/0004-637x/718/2/1100 |
es_ES |
dc.description.references |
Bouilloud, M., Fray, N., Bénilan, Y., Cottin, H., Gazeau, M.-C., & Jolly, A. (2015). Bibliographic review and new measurements of the infrared band strengths of pure molecules at 25 K: H2O, CO2, CO, CH4, NH3, CH3OH, HCOOH and H2CO. Monthly Notices of the Royal Astronomical Society, 451(2), 2145-2160. doi:10.1093/mnras/stv1021 |
es_ES |
dc.description.references |
Cazaux, S., Bossa, J.-B., Linnartz, H., & Tielens, A. G. G. M. (2014). Pore evolution in interstellar ice analogues. Astronomy & Astrophysics, 573, A16. doi:10.1051/0004-6361/201424466 |
es_ES |
dc.description.references |
Dohnálek, Z., Kimmel, G. A., Ayotte, P., Smith, R. S., & Kay, B. D. (2003). The deposition angle-dependent density of amorphous solid water films. The Journal of Chemical Physics, 118(1), 364-372. doi:10.1063/1.1525805 |
es_ES |
dc.description.references |
Drabek-Maunder E., Greaves J., Fraser H. J., Clements D. L., & Alconcel L. N. 2017, Int. J. Astrobiol., DOI: 10.1017/S1473550417000428 |
es_ES |
dc.description.references |
Gálvez, O., Maté, B., Martín-Llorente, B., Herrero, V. J., & Escribano, R. (2009). Phases of Solid Methanol. The Journal of Physical Chemistry A, 113(14), 3321-3329. doi:10.1021/jp810239r |
es_ES |
dc.description.references |
Gerakines, P. A., Bray, J. J., Davis, A., & Richey, C. R. (2005). The Strengths of Near‐Infrared Absorption Features Relevant to Interstellar and Planetary Ices. The Astrophysical Journal, 620(2), 1140-1150. doi:10.1086/427166 |
es_ES |
dc.description.references |
Hodyss, R., Parkinson, C. D., Johnson, P. V., Stern, J. V., Goguen, J. D., Yung, Y. L., & Kanik, I. (2009). Methanol on Enceladus. Geophysical Research Letters, 36(17). doi:10.1029/2009gl039336 |
es_ES |
dc.description.references |
Hudgins, D. M., Sandford, S. A., Allamandola, L. J., & Tielens, A. G. G. M. (1993). Mid- and far-infrared spectroscopy of ices - Optical constants and integrated absorbances. The Astrophysical Journal Supplement Series, 86, 713. doi:10.1086/191796 |
es_ES |
dc.description.references |
Hudson, R. L., Ferrante, R. F., & Moore, M. H. (2014). Infrared spectra and optical constants of astronomical ices: I. Amorphous and crystalline acetylene. Icarus, 228, 276-287. doi:10.1016/j.icarus.2013.08.029 |
es_ES |
dc.description.references |
Ioppolo, S., van Boheemen, Y., Cuppen, H. M., van Dishoeck, E. F., & Linnartz, H. (2011). Surface formation of CO2 ice at low temperatures. Monthly Notices of the Royal Astronomical Society, 413(3), 2281-2287. doi:10.1111/j.1365-2966.2011.18306.x |
es_ES |
dc.description.references |
Isokoski, K., Bossa, J.-B., Triemstra, T., & Linnartz, H. (2014). Porosity and thermal collapse measurements of H2O, CH3OH, CO2, and H2O:CO2 ices. Physical Chemistry Chemical Physics, 16(8), 3456. doi:10.1039/c3cp54481h |
es_ES |
dc.description.references |
Maté, B., Gálvez, Ó., Herrero, V. J., & Escribano, R. (2008). INFRARED SPECTRA AND THERMODYNAMIC PROPERTIES OF CO2/METHANOL ICES. The Astrophysical Journal, 690(1), 486-495. doi:10.1088/0004-637x/690/1/486 |
es_ES |
dc.description.references |
Merlin, F., Quirico, E., Barucci, M. A., & de Bergh, C. (2012). Methanol ice on the surface of minor bodies in the solar system. Astronomy & Astrophysics, 544, A20. doi:10.1051/0004-6361/201219181 |
es_ES |
dc.description.references |
Molpeceres, G., Satorre, M. A., Ortigoso, J., Millán, C., Escribano, R., & Maté, B. (2016). OPTICAL CONSTANTS AND BAND STRENGTHS OF CH4:C2H6ICES IN THE NEAR- AND MID-INFRARED. The Astrophysical Journal, 825(2), 156. doi:10.3847/0004-637x/825/2/156 |
es_ES |
dc.description.references |
Öberg, K. I. (2016). Photochemistry and Astrochemistry: Photochemical Pathways to Interstellar Complex Organic Molecules. Chemical Reviews, 116(17), 9631-9663. doi:10.1021/acs.chemrev.5b00694 |
es_ES |
dc.description.references |
Pontoppidan, K. M., Dartois, E., van Dishoeck, E. F., Thi, W.-F., & d’ Hendecourt, L. (2003). Detection of abundant solid methanol toward young low mass stars. Astronomy & Astrophysics, 404(1), L17-L20. doi:10.1051/0004-6361:20030617 |
es_ES |
dc.description.references |
Sandford, S. A., & Allamandola, L. J. (1993). Condensation and vaporization studies of CH3OH and NH3 ices: Major implications for astrochemistry. The Astrophysical Journal, 417, 815. doi:10.1086/173362 |
es_ES |
dc.description.references |
Satorre, M. Á., Domingo, M., Millán, C., Luna, R., Vilaplana, R., & Santonja, C. (2008). Density of , and ices at different temperatures of deposition. Planetary and Space Science, 56(13), 1748-1752. doi:10.1016/j.pss.2008.07.015 |
es_ES |
dc.description.references |
Satorre, M. Á., Leliwa-Kopystynski, J., Santonja, C., & Luna, R. (2013). Refractive index and density of ammonia ice at different temperatures of deposition. Icarus, 225(1), 703-708. doi:10.1016/j.icarus.2013.04.023 |
es_ES |
dc.description.references |
Satorre, M. Á., Millán, C., Molpeceres, G., Luna, R., Maté, B., Domingo, M., … Santonja, C. (2017). Densities and refractive indices of ethane and ethylene at astrophysically relevant temperatures. Icarus, 296, 179-182. doi:10.1016/j.icarus.2017.05.005 |
es_ES |
dc.description.references |
Sauerbrey, G. (1959). Verwendung von Schwingquarzen zur W�gung d�nner Schichten und zur Mikrow�gung. Zeitschrift f�r Physik, 155(2), 206-222. doi:10.1007/bf01337937 |
es_ES |
dc.description.references |
Torrie, B. H., Weng, S.-X., & Powell, B. M. (1989). Structure of the α-phase of solid methanol. Molecular Physics, 67(3), 575-581. doi:10.1080/00268978900101291 |
es_ES |
dc.description.references |
Watanabe, N., & Kouchi, A. (2002). Efficient Formation of Formaldehyde and Methanol by the Addition of Hydrogen Atoms to CO in H[TINF]2[/TINF]O-CO Ice at 10 K. The Astrophysical Journal, 571(2), L173-L176. doi:10.1086/341412 |
es_ES |
dc.description.references |
Weast R. 1972, Handbook of Chemistry and Physics, 53rd edn. (Cleveland: Chemical Rubber Co.), 155 |
es_ES |
dc.description.references |
Zanchet, A., Rodríguez-Lazcano, Y., Gálvez, Ó., Herrero, V. J., Escribano, R., & Maté, B. (2013). OPTICAL CONSTANTS OF NH3AND NH3:N2AMORPHOUS ICES IN THE NEAR-INFRARED AND MID-INFRARED REGIONS. The Astrophysical Journal, 777(1), 26. doi:10.1088/0004-637x/777/1/26 |
es_ES |